УДК 621.396+621.391.82

ОЦЕНКА ПОТЕНЦИАЛЬНОЙ ПОМЕХОУСТОЙЧИВОСТИ РАДИОПРИЁМА С ПРОСТРАНСТВЕННОЙ ОБРАБОТКОЙ СИГНАЛОВ В МНОГОЛУЧЕВЫХ КАНАЛАХ РАДИОСВЯЗИ. ЧАСТЬ 2. МЕТРОВЫЙ И ДЕЦИМЕТРОВЫЙ ДИАПАЗОН

А. В. Львов*, С. А. Метелёв

ФНПЦ ОАО «Научно-производственное предприятие «Полёт», г. Нижний Новгород, Россия

Предложены имитационные модели для оценки помехоустойчивости радиоприёма с использованием пространственной обработки сигналов в авиационном и наземных каналах связи метрового и дециметрового диапазонов длин волн. Исследована предельная достижимая помехоустойчивость в различных условиях распространения радиоволн

ВВЕДЕНИЕ

Пространственная обработка сигналов является эффективным методом повышения помехоустойчивости каналов радиосвязи. Адаптивное суммирование колебаний, принимаемых пространственно разнесёнными антеннами в отсутствие помех, обеспечивает когерентное сложение сигналов с этих антенн, а при попадании в полосу приёма внешних случайных или преднамеренных помех компенсирует их и повышает отношение мощности сигнала к суммарной мощности остатков помехи и шума.

Хорошо известно, что при этом в стационарных однолучевых каналах связи достигается значительный выигрыш по помехоустойчивости, ограничивающийся лишь величиной углового разнесения между источником сигнала и помехи и отношением сигнала к входным шумам в ветвях разнесения [1]. Реальные каналы связи в метровом и дециметровом диапазонах длин волн являются нестационарными и многолучевыми, и ограничивающими эффективность пространственной обработки факторами являются свойства этих каналов.

В данной работе, на основе на модели авиационного и наземного каналов в метровом и дециметровом диапазонах длин волн [2] и методики имитационного моделирования, приведённой в работе [3], проведено исследование эффективности пространственной обработки для различной сигнально-помеховой обстановки.

Подчеркнём, что, в отличие от наших исследований в декаметровом диапазоне длин волн [3], в настоящей работе изучалась эффективность пространственной обработки сигналов, принимаемых с числом лучей, значительно превышающим число ветвей разнесения (т. е. число степеней свободы) адаптивной антенной решётки.

1. МЕТОДИКА ОЦЕНКИ ЭФФЕКТИВНОСТИ РАБОТЫ КОМПЕНСАТОРОВ ПОМЕХ

Для оценки предела возможностей пространственной обработки сигналов была выбрана методика, предложенная в [3]. Потенциальная помехоустойчивость h^2 , равная отношению сигнал/(по-

^{*} alexey@lvov.in

меха+ шум) (ОСПШ) на выходе оптимального устройства пространственной обработки сигналов, в соответствии с [1], определяется формулой

$$h^2 = \mathbf{s}^{\mathrm{T}} \mathbf{R}_{xx}^{-1} \mathbf{s}^*, \tag{1}$$

где **s** — вектор сигналов, принимаемых антенной решёткой, \mathbf{R}_{xx}^{-1} — обратная корреляционная матрица вектора **x** помех и шумов в ветвях разнесения, индекс T обозначает транспонирование, индекс * — комплексное сопряжение.

Одновременно с потенциальной помехоустойчивостью, являющейся лишь пределом возможностей пространственной обработки, исследовалась эффективность градиентных алгоритмов пространственной обработки сигналов на примере субоптимального алгоритма Уидроу—Хопфа с ортонормированием входных процессов (УХО), основанного на критерии минимума среднеквадратичной опшобки, реализованного в действующих устройствах. В этом алгоритме эталонный сигнал формируется из выходного колебания при помощи жёсткого ограничителя (для частотноманипулированного сигнала) или при помощи жёсткого ограничителя с комплексным сопряжением (для фазоманипулированного сигнала). Величина ОСПШ на выходе алгоритма УХО, H^2 , вычисляется методом эквивалентных весовых коэффициентов (т. е. весовых коэффициентов эквивалентного адаптивного сумматора, $w_{1,equ}$ и $w_{2,equ}$ (2)). В нём компенсатор передаёт свои текущие весовые коэффициенты w_i и нормировочные коэффициенты системы автоматической регулировки усиления P_i в блок оценки ОСПШ, в котором на выходе алгоритма УХО происходит вычисление отдельно сигнала, s_{out} , и помехи с шумами, $(j + n)_{out}$:

$$s_{\text{out}} = w_{1,\text{equ}} s_1 + w_{2,\text{equ}} s_2, \qquad (j+n)_{\text{out}} = w_{1,\text{equ}} (j_1 + n_1) + w_{2,\text{equ}} (j_2 + n_2),$$
$$w_{1,\text{equ}} = \frac{w_1}{\sqrt{P_1}\sqrt{P_3}}, \qquad w_{2,\text{equ}} = \frac{w_2 - w_1 w_0 / \sqrt{P_3}}{\sqrt{P_2}}, \qquad H^2 = \frac{\langle s_{\text{out}}^2 \rangle}{\langle (j+n)_{\text{out}}^2 \rangle}. \tag{2}$$

Здесь w_1, w_2 — весовые коэффициенты процедуры Уидроу—Хопфа, w_0 — весовой коэффициент входного ортогонализатора, P_i — мощности процессов на входе (i = 1, 2) и на выходе (i = 3)ортогонализатора, угловыми скобками обозначено текущее усреднение с постоянной времени $\mu/3$ $(\mu$ — постоянная времени в алгоритме УХО, соответствующая 10 символам в авиационном канале и 100 символам в наземном канале, т.е. характерному времени нестационарности канала из-за эффекта Доплера), s_i, j_i , и n_i (i = 1, 2) — уровни сигналов, помех и шумов в ветвях разнесения соответственно.

Потенциальная помехоустойчивость и эффективность алгоритма УХО определялась в имитационной модели путём усреднения по времени вычисленных по формулам (1) и (2) значений h^2 и H^2 .

Особенности пространственной обработки сигналов в многолучевых каналах метрового и дециметровомго диапазонов длин волн исследовались при помощи компенсатора помех с двумя ветвями пространственного разнесения.

2.АВИАЦИОННЫЙ КАНАЛ

2.1. Характеристики канала

В рассматриваемом диапазоне длин волн многолучевой канал исследуется на основе модели модифицированного [2] многолучевого канала с изменяемым фактором Райса K (от 0 до 15 дБ), числом рассеянных лучей N = 10, распределённых в угловом секторе с шириной 3° и прямым и отражённым от земли лучами. Исследовалась потенциальная помехоустойчивость h^2 и ОСПШ на

выходе алгоритма УХО H^2 в различных условиях распространения лучей в авиационном канале. Приёмник и передатчик находились на бортах, движущихся навстречу друг другу со скоростью 310 м/с на высоте 10 км. Двухэлементная антенная решётка располагалась перпендикулярно направлению движения.

Отношение помеха/сигнал на входе составляло 0 дБ, отношение сигнал/шум на входе пространственно разнесённых ветвей на приёмной стороне равнялось 40 дБ. В качестве полезного сигнала было выбрано колебание с относительной фазовой телеграфией со скоростью манипуляции 10 кБод, прошедшее через формирующий фильтр с конечной импульсной характеристикой (КИХ) с полосой, численно равной удвоенной скорости манипуляции, и подавлением вне полосы пропускания 60 дБ. В качестве помехи использовалось шумовое колебание, представляющее собой белый шум, прошедший через аналогичный фильтр.

Модель канала представляет собой сумму 12 лучей: прямого луча с доплеровским сдвигом частоты f_{D_1} , отражённого от земли луча с доплеровским сдвигом f_{D_2} , временной задержкой τ_2 и набегом фазы ϕ_2 (для прямого луча $\tau_1 = 0$ и $\phi_1 = 0$) и 10 рассеянных лучей с доплеровскими сдвигами f_{D_n} , временными задержками τ_n и набегами фазы ϕ_n ($n = 3, \ldots, 12$). Кроме того, с помощью амплитудного множителя A_n учитывался фактор Райса, равный отношению мощностей прямого и рассеянных лучей $K = 10 \lg (A_1^2 / \sum_{n=3}^{N+2} A_n^2)$. Импульсная характеристика канала описывается формулой

$$\tilde{h}(\tau,t) = \sum_{n=1}^{N+2} A_n \exp[j(\phi_n + 2\pi f_{D_n} t)] \delta(\tau - \tau_n).$$
(3)

Временная задержка отражённого от земли луча определяется как

$$\tau_2 = \Delta r = \frac{1}{c} \left(\frac{h_1}{\sin \alpha_d} + \frac{h_2}{\sin \alpha_d} - \sqrt{(h_2 - h_1)^2 + L^2} \right), \tag{4}$$

где $\alpha_{\rm d} = \arctan(h_1 + h_2)/L$, c — скорость света, h_1 , h_2 — высоты антенн над поверхностью земли, $\alpha_{\rm d}$ — угол отражения от земли, L — расстояние между приёмником и передатчиком.

Доплеровский сдвиг для прямого луча есть $f_{D1} = (vf_0/c) \cos \alpha_1$, где v — скорость движения приёмника относительно передатчика, α_1 — азимут луча, отсчитываемый от направления движения. Для отражённого от земли луча имеем $f_{D2} = (vf_0/c) \cos \alpha_2 \cos \theta_2$, где $\alpha_2 = \alpha_1$, θ_2 — азимут и угол места для отражённого луча соответственно. Для рассеянных лучей $f_{Dn} = (vf_0/c) \cos \alpha_n$, где α_n — азимут *n*-го рассеянного луча (отклонением направления прихода рассеянных лучей от горизонтали при одинаковой высоте приёмной и передающей антенны можно пренебречь), f_0 частота несущего колебания. Набег фазы $\Delta \phi_n$ на второй антенне относительно первой для двухэлементной антенной решётки определяется как $\Delta \phi_n = (2\pi d/\lambda) \sin \alpha_n \cos \theta_n$, где d — расстояние между элементами антенной решётки, λ — длина волны, α_n и θ_n — азимут и угол места *n*-го луча. Кроме того, для отражённого от земли луча добавляется фазовый набег $\delta \phi = 2\pi f_0 \Delta \tau$.

Описанный канал в имитационной модели реализован с помощью умножения сигнала каждого луча с соответствующими частотным и фазовым сдвигом и задержкой на амплитудный множитель и последующего сложения лучей.

С целью наиболее полного учёта влияния различных доплеровских сдвигов как прямого, так и отражённого и рассеянных лучей были исследованы следующие взаимные расположения лучей полезного сигнала относительно направления движения приёмного борта:

I) прямой и отражённый лучи приходят сбоку, перпендикулярно направлению движения, рассеянные лучи — сзади, вдоль направления движения;

Рис. 1. Зависимость величин $h^2(a)$
и $H^2(\delta)$ от расстояния rи угла приход
а θ помехи для варианта расположения лучей I
иK=15дБ

II) прямой и отражённый лучи — спереди, рассеянные лучи — сзади, вдоль направления движения;

III) прямой и отражённый лучи — спереди, рассеянные — сбоку, перпендикулярно направлению движения;

IV) прямой и отражённый лучи — с правой стороны по направлению движения, рассеянные — с левой, перпендикулярно направлению движения.

Лучи, приходящие от источника помехи, располагались аналогичным образом, но были повёрнуты на азимутальный угол β , изменяющийся от 0 до 360°. Кроме того, одновременно варьировались расстояния между приёмником и передатчиками сигнала и помехи L в пределах от 1 до 500 км. При этом осуществлялся перебор сигнально-помеховой обстановки в широком диапазоне параметров.

2.2. Результаты исследований

Полученные в результате имитационного моделирования значения потенциальной помехоустойчивости $h^2(\beta, L)$ и ОСПШ на выходе алгоритма УХО $H^2(\beta, L)$ в зависимости от расстояния и угловых различий помехи и сигнала изменяются от 0 дБ (при отсутствии угловых различий) до $30\div50$ дБ. В виде яркостной диаграммы величины h^2 и H^2 для варианта расположения лучей I и фактора Райса K = 15 дБ приведены на рис. 1.

Из приведённой диаграммы видно, что потенциальная помехоустойчивость достаточно высока $(h^2 > 10 \text{ дБ})$ всюду, кроме диапазона углов прихода прямого луча помехи вблизи угла прихода прямого луча сигнала и зеркального к нему направления.

Помехоустойчивость субоптимального алгоритма УХО H^2 проигрывает потенциальной помехоустойчивости до 10 дБ для варианта расположения лучей I и IV и до 20 дБ для вариантов расположения лучей II и III.

Общий характер изменения $h^2(\beta, L)$ и $H^2(\beta, L)$ в зависимости от угла между направлением прихода лучей помехи и сигнала, а также от расстояния между передатчиком и приёмником остаётся неизменным для всех вариантов расположения лучей. Зависимость помехоустойчивости от азимутального угла связана с разрешающей способностью двухэлементной решётки, а именно

А.В. Львов, С.А. Метелёв

	варианты расположения лучей										
	Ι		II		III		IV				
К, дБ	$\langle h^2 angle$, дБ	$\langle H^2 \rangle$, дБ	$\langle h^2 angle,$ дБ	$\langle H^2 \rangle$, дБ	$\langle h^2 angle,$ дБ	$\langle H^2 \rangle$, дБ	$\langle h^2 angle,$ дБ	$\langle H^2 \rangle$, дБ			
0,0	$13,\!9$	10,3	$23,\!3$	11,9	14,8	11,2	$13,\!3$	$10,\!6$			
7,0	18,8	13,8	$28,\!6$	14,4	21,0	14,0	17,1	$13,\!5$			
15,0	25,9	16,3	$34,\!8$	$15,\!5$	28,5	$15,\!4$	38,9	17,4			

Таблица 1. Усреднённые значения величин $\langle h^2 \rangle$ и $\langle H^2 \rangle$

Рис. 2. Зависимость величин $h^2(a)$ и $H^2(b)$ от расстояния L и угла прихода β помехи для варианта расположения лучей III при скорости передачи данных 1 кБод и K = 15 дБ

невозможностью компенсации помехи, приходящей с направления, совпадающего с направлением прихода полезного сигнала, и с зеркального ему направления. Изменение помехоустойчивости с расстоянием обусловлено интерференцией прямого и отражённого от земли лучей.

Усреднённые величины $\langle h^2 \rangle$ и $\langle H^2 \rangle$ на интервалах β и L, в которых отсутствуют резкие провалы h^2 и H^2 из-за отсутствия пространственных различий между сигналом и помехой или из-за интерференционных замираний, для вариантов расположения лучей I–IV и различных значений фактора Райса приведены в табл. 1.

Наилучшим с точки зрения потенциальной помехоустойчивости является вариант прихода лучей IV, близок к нему вариант II. Это объясняется сложением лучей полезного сигнала в случае прихода прямого и рассеянных лучей с зеркальных направлений. Значительный выигрыш в ОСПШ H^2 для вариантов расположения лучей IV и II по сравнению с вариантом I и III отсутствует. Это, по-видимому, обусловлено тем, что достигаемое ОСПШ ограничено конечностью шага настройки градиентного алгоритма УХО.

С увеличением фактора Райса наблюдается улучшение показателей помехоустойчивости, что объясняется снижением влияния рассеянных лучей.

Далее были проведены исследования значений потенциальной помехоустойчивости и ОСПШ на выходе алгоритма УХО для скорости манипуляции 1 кБод при той же скорости движения приёмника относительно передатчика. При таких параметрах доплеровский сдвиг лучей был сравним с полосой сигнала, а время усреднения в корреляторах, по-прежнему определяемое интервалом 10 бит, выросло в 10 раз.

В этом случае ОСПШ на выходе алгоритма УХО значительно снизилось (до уровня 0÷5 дБ,

Рис. 3. Зависимость величи
н h^2 (a) и H^2 (b)от расстояния и угла приход
а β для однолучевой помехи

Рис. 4. Зависимость величин h^2 (a) и H^2 (б) от расстояния L и угла прихода β для однолучевой модели при скорости движения бортов 200 м/с

см. рис. 2), что, по-видимому, связано с ростом динамической опшбки слежения в адаптивном алгоритме. Повышение ОСПШ до 15÷17 дБ при азимутальных углах около 180° объясняется настройкой алгоритма УХО на рассеянные лучи, которые в рассматриваемом варианте приходят перпендикулярно направлению движения бортов и, соответственно, не имеют доплеровских сдвигов. Это подтверждает рис. 3, на котором показаны величины h^2 и H^2 для однолучевой модели без рассеянных и отражённого от земли лучей. При снижении скорости движения приёмника относительно передатчика с 620 до 200 м/с и той же символьной скорости значения ОСПШ возрастают на 12÷16 дБ (см. рис. 4), что подтверждает вывод о зависимости помехоустойчивости от соотношения доплеровских сдвигов лучей и полосы сигнала.

2.3. Зависимость показателей помехоустойчивости от скорости манипуляции

Эффективность пространственной обработки в многолучевых каналах существенно зависит от полосы сигнала [3].

А.В. Львов, С.А. Метелёв

Исследование зависимости ОСПШ на выходе алгоритма УХО от скорости манипуляции полезного сигнала C и, соответственно, его полосы и полосы помехи осуществлялось при фиксированной сигнально-помеховой обстановке. Угол β оставался постоянным и равным 108°, фактор Райса K = 15 дБ, расстояние между бортами L составляло 100 км. Результаты для вариантов взаимного расположения лучей I–IV приведены на рис. 5. Потенциальная помехоустойчивость H^2 при изменении скорости манипуляции варьировалась незначительно и составляла более 40 дБ для всех вариантов расположения лучей.

Было установлено, что в случае, когда доплеровский сдвиг прямого луча полезного сигнала отсутствует (варианты I и IV), помехоустойчивость выше примерно на 5 дБ в диапазоне скоро-

Рис. 5. Зависимость ОСПШ H^2 от скорости манипуляции C и полосы сигнала и помехи Δf для различных вариантов конфигурации лучей

стей манипуляции до 120÷130 кБод. При этом $H^2 \approx 22$ дБ при *C* до 20 кБод для вариантов I и IV и 15 дБ для вариантов II и III. С дальнейшим возрастанием *C* помехоустойчивость H^2 монотонно снижается до 7 дБ при $C \approx 140$ кБод для вариантов I и IV и $C \approx 80$ кБод для вариантов II и III.

2.4. Выводы

Таким образом, в исследованных условиях для авиационного канала в метровом и дециметровом диапазонах длин волн были получены следующие результаты:

1) ОСПШ на выходе алгоритма УХО достигает 20÷30 дБ, а потенциальная помехоустойчивость 40÷50 дБ для различной сигнально-помеховой обстановки, причём обе величины возрастают с увеличением фактора Райса;

2) наблюдающиеся изменения показателей помехоустойчивости при перемещении приёмного устройства в пространстве определяются суммарным воздействием интерференционных замираний сигнала и помехи;

3) в случае прихода лучей сигнала и помехи с совпадающих и зеркальных направлений наблюдается резкое снижения показателей помехозащищённости, обусловленное исчезновением пространственных различий сигнала и помехи;

4) в случае, когда доплеровский сдвиг лучей сравним с полосой сигнала, ОСПШ на выходе алгоритма УХО резко падает;

5) при повышении скорости манипуляции и, соответственно, полосы сигнала ОСПШ снижается: оптимальными являются скорости, при которых длина символа не превышает характерное время задержки между лучами.

3. НАЗЕМНЫЙ КАНАЛ

3.1. Характеристики канала

В рассматриваемом диапазоне длин волн многолучевой канал моделируется рэлеевским каналом с числом лучей N до 12. Импульсная характеристика этого канала определяется формулой

n	τ_n	A_n .	$G_n(t)$.	τ_n ,	A_n .	$G_n(t)$.	τ_n ,	A_n .	$G_n(t)$,
	мкс	дБ	формула	MKC	дБ	формула	MKC	дБ	формула
	городская застройка			сельская застройка			холмистая местность		
1	0,0	-2,0	(6)	0,0	-8,0	(6)	0,0	0,0	(6)
2	$0,\!2$	0,0	(6)	$1,\!0$	-2,0	(6)	$0,\!5$	-5,7	(6)
3	$_{0,5}$	-3,0	(6)	2,5	0,0	(6)	$1,\!3$	-12,7	(6)
4	$0,\!9$	-4,0	(6)	3,5	-1,0	(6)	$1,\!9$	-20, 6	(6)
5	1,2	-2,0	(6)	$5,\!0$	-2,0	(6)	30,0	-3,1	(7)
6	1,4	0,0	(6)	8,0	-3,0	(6)	31,3	-5,4	(7)
7	2,0	-3,0	(6)	12,0	0,0	(6)	34,9	-11,6	(7)
8	2,4	-5,0	(6)	14,0	-6,0	(6)	37,2	-15,9	(7)
9	$_{3,0}$	-10,0	(6)	16,0	-3,0	(6)	39,1	-18,9	(7)
10							40,0	-25,7	(7)
11							80,0	-4,5	(8)
12							82,7	-11,5	(8)

Таблица 2. Параметры канала для различных типов местности

$$\tilde{h}(\tau,t) = \sum_{n=1}^{N} A_n \exp[j(\phi_n + 2\pi f_{D_n} t)] \delta(\tau - \tau_n) G_n(t),$$
(5)

где $G_n(t)$ — случайный процесс с заданным частотным спектром $P_n(f)$, соответствующий доплеровскому уширению лучей. Исследования проводились для трёх видов спектра P_n :

$$P_n(f) = \frac{A_n}{\sqrt{1 - (f/f_{\rm D})^2}},$$
(6)

$$P_n(f) = A_n \exp\left[\frac{(f - 0.7f_{\rm D})^2}{0.02f_{\rm D}^2}\right],\tag{7}$$

$$P_n(f) = A_n \exp\left[\frac{(f+0.7f_{\rm D})^2}{0.02f_{\rm D}^2}\right].$$
(8)

Были рассмотрены несколько типов местности с различными характеристиками многолучёвости: местность с городской застройкой, с сельской застройкой и холмистая местность. Азимутальные углы прихода лучей были выбраны случайными с равномерным распределением в диапазоне 20°, 1° и 30° для городской застройки, сельской застройки и холмистой местности соответственно [4, 5]. Параметры A_n и τ_n и вид спектра случайного процесса $G_n(t)$ для каждого из лучей приведены в табл. 2.

Скорости движения объектов, определяющие величину доплеровского сдвига каждого луча, составляют 60, 150 и 100 км/ч для городской застройки, сельской застройки и холмистой местности соответственно [4, 5].

Описанный канал реализован в имитационной модели с помощью модуляции сигнала по амплитуде и фазе комплексным случайным гауссовским процессом, прошедшим КИХ-фильтр с заданной амплитудно-частотной характеристикой, которая соответствует спектру случайного процесса $G_n(t)$, и добавления к каждому лучу соответствующего частотного и фазового сдвига, а также временной задержки.

Имитационное моделирование проводилось для приведённых типов местности для трёх рабочих частот: 137, 450 и 830 МГц. Полезный сигнал приходил перпендикулярно раскрыву антенной

50r

40

30

20

10

решётки, помеха — с азимутального угла в диапазоне $0^{\circ} \div 360^{\circ}$. Постоянная времени μ соответствовала времени усреднения по 100 символам.

3.2. Результаты исследований

Полученные в результате имитационного моделирования значения потенциальной помехоустойчивости h^2 и ОСПШ на выходе алгоритма УХО H^2 приведены на рис. 6 для трёх моделей канала и трёх несущих частот радиоволн в зависимости от угла прихода помехи. Из него видно, что наихудшим случаем с точки зрения компенсации помех является холмистая местность, характеризуемая большими временами задержек лучей, большим диапазоном азимутальных углов прихода радиоволн сигнала и помехи и значительным доплеровским сдвигом. Потенциальная помехоустойчивость в этих условиях достигает 30÷35 дБ на частоте 137 МГц и падает до 28 дБ с ростом несущей частоты до 830 МГц. Помехоустойчивость градиентного алгоритма значительно ниже и с ростом несущей частоты изменяется от 20 до 15 дБ.

Для всех шести кривых наблюдаются провалы при направлении прихода помехи, совпадающем с направлением прихода сигнала и с зеркальным ему направлением.

В местности с городской и сельской застройкой помехоустойчивость значительно выше и достигает значений $h^2 = 45$ дБ и $H^2 = 25 \div 30$ дБ, которые падают с ростом несущей частоты и с приближением направления прихода помехи к направлению прихода сигнала и к зеркальному ему направлению.

Рис. 7. Зависимость величин h^2 (•) и H^2 (◦) от скорости манипуляции C и полосы полезного сигнала Δf для городской (a) и сельской (δ) застройки и холмистой местности (ϵ). Сплошными линиями показаны кривые, аппроксимирующие указанные зависимости

3.3. Зависимость показателей помехоустойчивости от скорости манипуляции

Как было сказано ранее, эффективность пространственной обработки в многолучевых каналах существенно зависит от полосы сигнала. Зависимость потенциальной помехоустойчивости и ОСПШ на выходе алгоритма УХО от скорости манипуляции и, соответственно, полосы полезного сигнала и помехи была исследована для всех вышеуказанных типов местности при фиксированной сигнально-помеховой обстановке. Угол β оставался постоянным и равным 108°. Полученные зависимости приведены на рис. 7.

Как и в авиационном канале, было обнаружено снижение показателей помехоустойчивости при увеличении полосы сигнала. При низких скоростях манипуляции (10÷50 кБод) максимальные значения были получены для сельской местности, для которой характерен небольшой азимутальный разброс лучей. С ростом азимутального разброса (в случае городской и холмистой местности) ОСПШ H^2 снижалось. При увеличении скорости манипуляции наблюдалось моно-

3.4. Выводы

Таким образом, в исследованных условиях для наземного канала в метровом и дециметровом диапазонах длин волн были получены следующие результаты:

1) пространственная обработка сигналов в многолучевых каналах связи обеспечивает повышение помехоустойчивости на величину более 20 дБ;

2) в случае прихода сигнала и помехи с одного и того же или зеркального направлений эффективность пространственной обработки резко снижается;

3) эффективность пространственной обработки снижается с увеличением доплеровского сдвига, причём наиболее выражено в условиях, когда задержка между лучами сравнима с длиной символа модулированного сигнала;

4) при повышении скорости манипуляции и, соответственно, полосы сигнала эффективность пространственной обработки падает, что приводит к снижению помехоустойчивости на 5÷15 дБ.

Следует также заметить, что все вышеприведённые значения потенциальной помехоустойчивости и ОСПШ на выходе алгоритма УХО являются усреднёнными по времени на интервалах, намного превышающих длительность символа. Мгновенные же значения флуктуируют в широких пределах, что позволяет при условии применения соответствующего форматирования исходного сообщения (с использованием перемежения и избыточного кодирования или механизма перезапросов) увеличить надёжность связи.

4. ЗАКЛЮЧЕНИЕ

В работе исследована эффективность пространственной обработки сигналов для повышения помехоустойчивости в типовых многолучевых каналах связи метрового и дециметрового диапазона длин волн (в трёх наземных и в авиационном каналах). Предложены новые методы оценки этой помехоустойчивости. На примере устройства пространственной обработки сигналов с двумя ветвями разнесения показано, что во многих случаях пространственная обработка даёт значительный выигрыш в помехоустойчивости.

Вместе с тем, выявлены основные дестабилизирующие факторы, снижающие эффективность такой обработки. Главными из них являются: интенсивность рассеянной компоненты помехи, степень нестационарности передаточной функции канала и величина временно́го рассеяния в канале. При уменьшении фактора Райса, увеличении доплеровского сдвига в лучах и расширении интервала задержек в рассеянных лучах падает потенциальная помехоустойчивость и эффективность реальных градиентных алгоритмов пространственной обработки сигналов. В работе показано, что сужение полосы частот полезного сигнала до величины, меньшей обратного времени характерной задержки рассеянных лучей в канале, позволяет преодолеть негативное влияние частотной и временно́й дисперсии в канале и повысить выигрыш в помехоустойчивости при пространственной обработке.

Значительное различие между потенциальной помехоустойчивостью h^2 и помехоустойчивостью алгоритма УХО H^2 показывает, что простые градиентные алгоритмы не могут полностью использовать пространственный ресурс радиолиний. Этот запас по помехоустойчивости необ-

ходимо реализовывать при помощи новых алгоритмов пространственной обработки сигналов, учитывающих специфику нестационарных и многолучевых каналов распространения радиоволн.

СПИСОК ЛИТЕРАТУРЫ

- 1. Монзинго Р.А., Миллер Т.У. Адаптивные антенные решётки. Введение в теорию. М.: Радио и связь, 1986. 448 с.
- 2. Метелёв С. А., Львов А. В. // Изв. вузов. Радиофизика. 2015. Т. 58, № 2. С. 100.
- 3. Метелёв С. А., Львов А. В. // Изв. вузов. Радиофизика. 2016. Т. 59, № 4 С. 364.
- 4. ETSI ES 201 980 V3.2.1 (2012-06). Digital Radio Mondiale (DRM); System Specification.
- 5. Paulraj A., Papadias C.B. // Digital Signal Processing Handbook. Ch. 9. Boca Raton, Florida, USA: CRC Press, 1997. 2394 p.

Поступила в редакцию 13 апреля 2015 г.; принята в печать 23 ноября 2015 г.

ESTIMATION OF POTENTIAL INTERFERENCE IMMUNITY OF RADIO RECEPTION WITH THE SPATIAL PROCESSING OF SIGNALS IN MULTIPATH RADIO-COMMUNICATION CHANNELS. PART II. METER AND DECIMETER RANGES

A. V. L'vov and S. A. Metelev

We propose simulation models for estimating the interference immunity of radio reception using the spatial processing of signals in the aircraft- borne and ground-based communication channels of the meter and decimeter wavelength ranges. The limit achievable interference immunity for various radio-wave propagation conditions is studied.