УДК 621.373.1

ДИНАМИЧЕСКАЯ СЕДЛО-УЗЛОВАЯ БИФУРКАЦИЯ ПРЕДЕЛЬНЫХ ЦИКЛОВ В МОДЕЛИ НЕЙРОННОЙ ВОЗБУДИМОСТИ

С. Ю. Кириллов^{1,2}*, В. И. Некоркин^{1,2}

¹ Институт прикладной физики РАН;

² Нижегородский госуниверситет им. Н.И. Лобачевского, г. Нижний Новгород, Россия

На примере модели нейронной возбудимости проведено исследование аналога седло-узловой бифуркации предельных циклов в случае медленного изменения контрольного параметра, т. е. в случае так называемой динамической седло-узловой бифуркации циклов. Показано, что устойчивые колебания в такой системе происходят на двумерном инвариантном многообразии, существующем и после прохождения «статического» бифуркационного значения. Установлено, что колебания исчезают со значительной задержкой относительно момента прекращения колебаний, предсказываемого классической теорией бифуркаций. Показано, что в формировании задержки значительную роль играют нелокальные колебательные свойства модели и, в частности, пороговые свойства двумерной инвариантной поверхности седловой траектории.

ВВЕДЕНИЕ

Возникновение (или исчезновение) периодических колебаний в результате образования полуустойчивого (двукратного) предельного цикла, который при дальнейшем изменении управляющего параметра распадается на два грубых предельных цикла (устойчивый и неустойчивый), является одним из основных сценариев нелинейной динамики, существующих в моделях самой различной природы. Такая бифуркация носит название седло-узловой или тангенциальной бифуркации предельных циклов [1]. Описанный сценарий появления предельных циклов реализуется при квазистатическом изменении параметра. Однако для многих реальных задач некоторые параметры не являются, строго говоря, постоянными, а медленно (по сравнению с собственными характерными временны́ми масштабами) изменяются во времени. Бифуркации, происходящие в результате такого «дрейфа» параметров, принято называть динамическими [2].

В настоящее время наиболее полно изучены динамические бифуркации состояний равновесия многомерных систем [3–15]. В частности, достаточно подробно исследован случай медленного прохождения через точку бифуркации двукратного состояния равновесия [8–15]. На простейшем примере этот случай рассмотрен в [10, 11]. В этих работах исследована двумерная система, являющаяся нормальной формой для динамической бифуркации двукратного состояния равновесия. Изучены свойства «равновесных траекторий» — медленных фазовых траекторий в неавтономной системе, возникающих от «кривых равновесий», составленных из состояний равновесия автономной системы при квазистатическом изменении управляющего параметра. Установлено, что в фазовом пространстве устойчивая «равновесная траектория» продолжает существовать после прохождения точки «статической» бифуркации двукратного состояния равновесия, по крайней мере, ещё в течение некоторого конечного времени. Это означает, что срыв с равновесного состояния, соответствующего медленному движению вдоль равновесной траектории, происходит не сразу после прохождения точки бифуркаций, а с некоторой задержкой. Величина последней может быть достаточно большой, и пренебрегать ей нельзя. В частности, в [12–15] показано, что существование задержки при динамической бифуркации двукратного равновесия приводит

^{*} skirillov@neuron.appl.sci-nnov.ru

к формированию «динамического гистерезиса» в системе с периодически изменяющимся параметром.

В работах [11, 13] рассмотрены аналитические подходы к вычислению асимптотик равновесной траектории и её продолжения в локальной окрестности точки бифуркации, основанные на методе многоугольников Ньютона («Newton's polygons») и на так называемом методе расширяющих преобразований («Blow-up transformation»).

Как известно, в статическом случае существуют три основные (с коразмерностью 1) бифуркации предельных циклов. Первая из этих бифуркаций состоит в рождении (или исчезновении) инвариантного тора, когда комплексно-сопряжённые мультипликаторы предельного цикла пересекают на комплексной плоскости окружность с единичным радиусом (так называемая бифуркация Неймарка—Сакера). Вторая бифуркация соответствует прохождению мультипликатора через значение, равное –1 (бифуркация удвоения периода), а третья — через значение +1 (седлоузловая бифуркация, которую часто называют бифуркацией двукратного предельного цикла). Теория динамических бифуркаций Неймарка—Сакера и удвоения периода построена в [16]. В общем случае динамическая седло-узловая бифуркация предельных циклов не изучена. Лишь для квазилинейных систем, например, системы Ван дер Поля динамическая седло-узловая бифуркация циклов может быть изучена регулярным путём. В случае таких систем её исследование сводится к анализу динамических бифуркаций состояний равновесия соответствующей усреднённой системы.

В литературе имеются лишь отдельные частные примеры численного моделирования систем с более сложной нелинейной динамикой [17], в которых сделан акцент на исследовании формы колебаний. Изучения механизмов, лежащих в основе динамической седло-узловой бифуркакции, в этих работах не проводилось. В нашей статье даётся первый пример такого анализа. Мы исследуем динамику существенно нелинейной модели нейронной возбудимости, в которой подавление спайковых колебаний происходит в результате динамической седло-узловой бифуркации циклов. Мы покажем, что существенную роль в этом процессе играют нелокальные свойства модели.

Стать организована следующим образом. В разделе 1 приводятся основные свойства динамики модифицированной модели ФитцХью—Нагумо. В разделе 2 исследуется быстро-медленная динамика модели и устанавливается «статическая» структура её инвариантных многообразий в трёхмерном фазовом пространстве. В разделе 3 с учётом результатов раздела 2 исследуется структура и взаимное расположение «динамических» инвариантных многообразий в окрестности точки седло-узловой бифуркации предельных циклов и изучается явление задержки исчезновения колебаний. В приложении с использованием теории возмущений находятся уравнения для определения одномерных инвариантных многообразий. В заключении кратко сформулированы полученные в работе результаты.

1. МОДЕЛЬ

Система ФитцХью—Нагумо является одной из самых известных и широко используемых (см., например, [18]) моделей мембранной возбудимости нейронов. В настоящей статье мы рассмотрим один из вариантов этой системы, предложенный в [19], в котором учитывается нелинейная зависимость медленного восстанавливающего тока от мембранного потенциала. Модель может быть представлена в следующем виде:

$$\dot{x} = y, \qquad \dot{y} = (1 - x^2 - \varepsilon) y - \varepsilon [\Phi(x) - I],$$
(1)

С. Ю. Кириллов, В. И. Некоркин

где

$$\Phi(x) = \begin{cases} x^3/3 - (1 - \alpha) x, & x \le 0; \\ x^3/3 - (1 - \beta) x, & x > 0, \end{cases}$$

переменная x описывает динамику мембранного потенциала, а переменная y характеризует его нелинейную связь с ионными токами. Параметр I определяет внешний ток (ток инжекции), который предполагался постоянным, т. е. $I \equiv I_0 = \text{const}$, а α , β и ε — постоянные положительные параметры (α и β характеризуют нелинейность, а ε — скорость изменения восстанавливающего тока). В работе [19] показано, что в зависимости от значений параметров система (1) может демонстрировать разнообразную динамику. В частности, существуют так называемые «большие», охватывающие все состояния равновесия, и «малые», охватывающие одно состояние равновесия, устойчивые и неустойчивые предельные циклы. Последние возникают (исчезают) за счёт бифуркаций «больших» и «малых» гомоклинических орбит (петель сепаратрис седла), седло-узловой бифуркации циклов и бифуркации Андронова—Хопфа.

В нашей работе параметры α , β и ε будут зафиксированы: $\alpha = 0.5$, $\beta = 2$, $\varepsilon = 0.35$. В дальнейшем нам потребуется знание свойств динамики системы (1), когда параметр I_0 квазистатически изменяется в пределах от $I_0 = 0$ до $I_0 = I_0^{\rm H} = 0.210095160 \pm 1 \cdot 10^{-9}$. Для $0 < I_0 < I_0^{\rm T} =$ $= 0.21009512391 \pm 1 \cdot 10^{-11}$ система (1) имеет структурно-устойчивый (грубый) фазовый портрет, представленный на рис. 1*a*, а для $I_0^{\rm T} < I_0 < I_0^{\rm H}$ — на рис. 1*b*. В обоих случаях на фазовой плоскости (x, y) существуют три состояния равновесия O_i $(x = x_i^*, y = 0)$, i = 1, 2, 3, где

$$x_1(0) = -2(1-\alpha)^{1/2} \cos\left[(\Psi-\pi)/3\right], \qquad x_2(0) = -2(1-\alpha)^{1/2} \cos\left[(\Psi+\pi)/3\right],$$

$$x_3(0) = -2(\beta-1)^{1/2} \sin(\eta/3), \qquad (2)$$

 $\cos \Psi = z_0/z_{\text{max}}, z_{\text{max}} = (1 - \alpha)^{3/2}/3, \text{ sh } \eta = 3z_0/[2(\beta - 1)^{3/2}].$

Состояние равновесия O_1 является асимптотически устойчивым, O_3 — неустойчивым, а O_2 — седлом с сепаратрисами w_j^u и w_j^s , j = 1, 2 (см. рис. $1a, \delta$). При $I_0 = I_0^T$ происходит седлоузловая бифуркация предельных циклов, в результате которой на фазовой плоскости при $I_0 > I_0^T$ появляются два грубых предельных цикла c^u и c^s . Заметим, что при $I_0 = 0$ происходит седлоузловая бифуркация состояний равновесия O_2 и O_3 , в результате которой они исчезают при $I_0 < 0$. Значение $I_0 = I_0^H$ соответствует бифуркации «большой петли сепаратрис» w_2^u и w_2^s седла O_2 , в результате которой неустойчивый предельный цикл c^s исчезает при $I_0 > I_0^H$.

Настоящая статья посвящена исследованию системы (1) в случае медленного убывания параметра $I: I(t) = I_0 - \mu t$, где $0 < \mu \ll 1$. Основное внимание будет уделено изучению эффектов подавления колебаний, связанных с динамической бифуркацией предельных циклов. В рассматриваемом случае система (1) становится неавтономной. Для удобства исследования представим её в следующем эквивалентном виде:

$$\dot{x} = y, \qquad \dot{y} = (1 - x^2 - \varepsilon) y - \varepsilon [\Phi(x) - z], \qquad \dot{z} = -\mu,$$
(3)

где $z = I_0 - \mu t$.

2. БЫСТРАЯ И МЕДЛЕННАЯ ДИНАМИКА

Будем рассматривать динамику системы (3) в трёхмерном фазовом пространстве

$$G = (x, y) \in \mathbb{R}^2, \qquad 0 < z \le I_0.$$

С. Ю. Кириллов, В. И. Некоркин

Поскольку в системе (3) параметр $0 < \mu \ll 1$, то она относится к классу быстро-медленных систем [10, 20, 21] с одной медленной переменной z и двумя быстрыми переменными x и y. Следовательно, её динамика является релаксационной и формируется действием быстрой и медленной подсистем (далее для краткости просто систем).

2.1. Система медленных движений

Следу [20], для получения системы медленных движений сначала перейдём в (3) к медленному времени $\tau = \mu t$, а затем сделаем формальный предельный переход $\mu \to 0$, предполагая при этом, что \dot{x} и \dot{y} — ограниченные функции. В результате получим

$$y = 0, \qquad \Phi(x) - z = 0, \qquad \frac{\mathrm{d}z}{\mathrm{d}\tau} = -1.$$
 (4)

В фазовом пространстве G система (4) задаёт три линии $L_i(0) = \{x = x_i^*(z), y = 0\}, i = 1, 2, 3,$ вдоль которых переменная z медленно убывает. Заметим, что линии $L_i(0)$ составлены из соответствующих состояний равновесия O_i .

2.2. Система быстрых движений

Положив в (3) $\mu = 0$, получим

$$\dot{x} = y, \qquad \dot{y} = (1 - x^2 - \varepsilon) y - \varepsilon [\Phi(x) - z], \qquad \dot{z} = 0,$$
(5)

где переменная z «заморожена» и играет роль параметра.

Каждое значение $z = z_0 = \text{const}$, $0 < z_0 \leq I_0$, задаёт в пространстве G инвариантную плоскость, на которой определена система (1) при $I = z_0$. Пусть $z_0 \in (I_0^{\mathrm{T}}, I_0^{\mathrm{H}})$; см. рис. 1. В этом случае на плоскости $z = z_0 = I_0$ система (5) имеет фазовый портрет, представленный на рис. 1 δ . Такой качественный вид разбиения фазовой плоскости на траектории будет сохраняться для всех $z_0^{\mathrm{T}} < z_0 < I_0$. При $z_0 = z_0^{\mathrm{T}}$ на фазовой плоскости (x, y) системы (5) существует полуустойчивый предельный цикл, который исчезает при $z_0 < z_0^{\mathrm{T}}$. При $0 < z_0 < z_0^{\mathrm{T}}$ на плоскости $z = z_0$ система (5) имеет фазовый портрет, представленный на рис. 1a.

2.2.1. Инвариантные многообразия системы (5)

Рассмотрим структуру разбиения фазового пространства G, формируемую траекториями системы (5). Из описанных выше свойств системы (5) на плоскостях x = const вытекают следующие свойства этого разбиения. При $z_0 \in (z_0^{\mathrm{T}}, I_0]$ в G существуют две замкнутые поверхности, составленные из предельных циклов c^{s} и c^{u} . Обозначим эти поверхности $C^{\mathrm{S}}(0)$ и $C^{\mathrm{U}}(0)$ соответственно. Заметим, что поверхность $C^{\mathrm{U}}(0)$ расположена внутри поверхности $C^{\mathrm{S}}(0)$. При $z = z_0^{\mathrm{T}}$ эти поверхности сливаются, образу замкнутую линию, соответствующую полуустойчивому предельному циклу системы (1) при $I = z_0^{\mathrm{T}}$. При $z_0 \in (0, z_0^{\mathrm{T}})$ поверхности $C^{\mathrm{S}}(0)$ и $C^{\mathrm{U}}(0)$ не существуют. На рис. 1e показаны «следы» $C_{\Sigma}^{\mathrm{S}}(0) = C^{\mathrm{S}}(0) \cap \Sigma$ и $C_{\Sigma}^{\mathrm{U}}(0) = C^{\mathrm{U}}(0) \cap \Sigma$ этих поверхностей от пересечения с плоскостью $\Sigma = \{y = 0, x > 0, 0 < z \leq I_0\}$.

Кроме поверхностей $C^{S}(0)$ и $C^{U}(0)$, в G существуют и другие особые многообразия — линии $L_{i}(0)$, составленные из состояний равновесия системы (3). Принимая во внимание поведение траекторий на плоскостях $z = z_0$ (см. рис. 1*a*, δ), устанавливаем, что при всех $z_0 \in (0, I_0)$ траектории системы (3) к линии $L_1(0)$ асимптотически приближаются, от линии $L_3(0)$ удаляются, а

Рис. 1. Структурно-устойчивые фазовые портреты системы (1) для $I_0 < I_0^{\rm T}$ (*a*), $I_0 > I_0^{\rm T}$ (*b*) и соответствующий этим фазовым портретам фрагмент бифуркационной диаграммы (*b*)

линия $L_2(0)$ является седловой, т.е. по ней пересекаются устойчивое и неустойчивое двумерные многообразия, составленные из сепаратрис w_i^{s} и w_i^{u} . Обозначим эти многообразия соответственно $W_i^{s}(0)$ и $W_i^{U}(0)$.

Траектории на $W_1^{\rm U}(0)$ и $W_2^{\rm U}(0)$ при $t \to \infty$ асимптотически приближаются к $L_1(0)$, на $W_2^{\rm S}(0)$ при $t \to -\infty - \kappa L_3(0)$, а на $W_1^{\rm S}(0)$ траектории совершают вращательные движения, охватывающие все три линии $L_i(0)$.

2.2.2. Отображение Пуанкаре системы (5)

В фазовом пространстве G на каждой плоскости $z = z_0 = \text{const}$, $0 < z_0 \leq I_0$, определена двумерная система, имеющая седло O_2 , сепаратриса которого совершает вращательные движения вокруг всех трёх состояний равновесия (см. рис. 1) и пересекает при этом луч $\sigma = \{y = 0, x > 0\}$. Обозначим через $M_i^{\mathrm{S}}(z_0)$, $i = 1, 2, \ldots$, точки, в которых сепаратриса w_1^{S} пересекает этот луч, и упорядочим их по мере возрастания координаты. Ясно, что любая траектория системы (5) с начальными условиями, лежащими на σ правее крайней точки $M_1^{\mathrm{S}}(z_0)$, вернётся за конечное время на σ . Заметим, что на $z = z_0$ траектории системы (5) пересекают σ трансверсально в сторону убывания координаты y, т. е. σ является секущей Пуанкаре. Другими словами, на каждой рассматриваемой плоскости z_0 траектории системы (5) порождают одномерное точечное отображение Пуанкаре $P_{z_0}: \sigma \to \sigma$. Следовательно, существует однопараметрическое семейство одномерных отображений.

Рассмотрим теперь поведение многообразия $W_1^S(0)$ в трёхмерном пространстве G. При изменении z_0 каждая из точек $M_i(z_0)$ формирует на плоскости Σ некоторую линию $T_i^S(0)$ (рис. 2a),

С. Ю. Кириллов, В. И. Некоркин

Рис. 2. «Следы» многообразия $W_1^{\rm S}(0)$ в области Σ , т. е. линии $T_i^{\rm S}(0) = W_1^{\rm S}(0) \cap \Sigma$ (панель a), «следы» многообразия $W_1^{\rm S}(\mu)$ в области Σ , т. е. линии $T_i^{\rm S}(\mu) = W_1^{\rm S}(\mu) \cap \Sigma$ при $\mu = 10^{-11}$ (панель δ)

являющуюся линией, по которой $W_1^{\rm S}(0)$ пересекает эту плоскость. Вид линий $T_i^{\rm S}(0)$ существенно зависит от значения индекса *i*. С увеличением *i* линии $T_i^{\rm S}(0)$ при $z_0 > z_0^{\rm T}$ асимптотически приближаются к $c^{\rm U}(0)$, а при $z < z_0^{\rm T}$ — к значению $z = z_0^{\rm T}$. При этом при $i \to +\infty$ происходит «сгущение» линий $T_i^{\rm S}(0)$ (рис. 2*a*). Любая траектория системы (5), стартующая с Σ правее линии $T_1^{\rm S}(0)$, вновь возвращается на Σ . Поэтому однопараметрическое семейство отображений P_{z_0} можно трактовать как двумерное отображение Пуанкаре $P(0): \Sigma \to \Sigma$.

2.3. Отображение Пуанкаре и инвариантные многообразия системы (3)

При $\mu \neq 0$ переменная z начинает медленно убывать во времени со скоростью μ . В этом случае, согласно теореме о непрерывной зависимости инвариантных многообразий от параметра [22], многообразия $L_i(0)$, i = 1, 2, 3, преобразуются в соответствующие и близкие к ним многообразия $L_i(\mu)$ (см. Приложение), а двумерные $C^{\rm S}(0)$ и $C^{\rm U}(0) - {\rm B} \ C^{\rm S}(\mu)$ и $C^{\rm U}(\mu)$. Инвариантные многообразия $C^{\rm S}(\mu)$ и $C^{\rm U}(\mu)$ остаются близкими к $C^{\rm S}(0)$ и $C^{\rm U}(0)$ при всех $z > z_0^{\rm S}$, где $z_0^{\rm S} = z_0^{\rm T} + \mu$, $0 < \mu \ll 1$, при которых в статическом случае $\mu = 0$ предельные циклы системы (3), образующие поверхности $C^{\rm S}(0)$ и $C^{\rm U}(0)$, являются грубыми. При этом $C^{\rm S}(\mu)$ и $C^{\rm U}(\mu)$ имеют ту же гладкость и устойчивость, что и $C^{\rm S}(0)$ и $C^{\rm U}(0)$.

Рассмотрим теперь поведение $C^{S}(\mu)$ и $C^{U}(\mu)$ при $z < z_{0}^{S}$, т. е. в области фазового пространства системы (5), в которой теорема Феничеля не применима. Для этого введём точечное отображение Пуанкаре, порождаемое траекториями системы (5), и исследуем его численно. Прежде всего установим вид линий $T_{i}^{S}(\mu)$, i = 1, 2, ..., т. е. найдём «следы» многообразия $W_{1}^{S}(\mu)$ на плоскости Σ . На рис. 26 представлено построенное численно семейство линий $T_{i}^{S}(\mu)$, i = 1, 2, ..., системы (3). Для достаточно малых значений индекса *i* линии $T_{i}^{S}(\mu)$ близки к соответствующим линиям $T_{i}^{S}(0)$. Однако с увеличением *i* линии $T_{i}^{S}(\mu)$ начинают отличаться от $T_{i}^{S}(0)$ и это отличие становится всё более существенным при больших значениях *i*. Такое поведение многообразия $W_{1}^{S}(\mu)$ объясняется тем, что даже при достаточно медленном изменении переменной *z* быстрые компоненты *x*

и *у* траекторий на многообразии $W_1^{\rm S}(\mu)$ успевают совершить большое число вращательных движений и их значения претерпевают существенное изменение. Нетрудно видеть, что траектории системы (3) с начальными условиями на плоскости Σ , лежащими правее линии $T_1^{\rm S}(\mu)$, вновь возвращаются на Σ , порождая точечное отображение Пуанкаре $P(\mu): \Sigma \to \Sigma$.

Рис. 3. Отображение Пуанкар
е $P(\mu)$ при $\alpha=0,5,$ $\beta=2,\,\varepsilon=0,35,\,\mu=10^{-11}$

Исследование отображения $P(\mu)$ было проведено нами численно. Результаты представлены на рис. 3. Мы обнаружили, что на секущей плоскости (x, z) существуют две инвариантные кривые $C_{\Sigma}^{\mathrm{S}}(\mu)$ и $C_{\Sigma}^{\mathrm{U}}(\mu)$, которые пересекаются с линией $T_1^{\rm S}(\mu)$ и продолжаются левее этой линии. Поскольку в дальнейшем исследовании эти части линий $C^{\mathrm{S}}_{\Sigma}(\mu)$ и $C^{\mathrm{U}}_{\Sigma}(\mu)$ не играют роли, они не показаны на рис. 3 . К линии $C^{\mathrm{S}}_{\Sigma}(\mu)$ траектории отображения Р асимптотически приближаются, а от линии $C^{\mathrm{U}}_{\Sigma}(\mu)$ они удаляются. Инвариантные линии $C_{\Sigma}^{\mathrm{S}}(\mu)$ и $C_{\Sigma}^{\mathrm{U}}(\mu)$ являются пересечениями двумерных многообразий $C^{S}(\mu)$ и $C^{U}(\mu)$ с плоскостью Σ. Вне достаточно малой окрестности значения $z = z_0^{\rm T}$ и положительных значениях z (т.е. там, где при $\mu = 0$ в системе (5) существуют два грубых предельных цикла) линии $C_{\Sigma}^{S}(\mu)$ и $C_{\Sigma}^{U}(\mu)$ близки к $C_{\Sigma}^{S}(0)$ и $C_{\Sigma}^{U}(0)$, что полностью согласуется с теоремой Феничеля [22]. Однако при всех других значениях z поведение $C_{\Sigma}^{\mathrm{S}}(\mu)$ и $C_{\Sigma}^{\mathrm{U}}(\mu)$ принципиально отличается от статического случая $\mu = 0$. Если при $\mu = 0$ ли-нии $C_{\Sigma}^{S}(0)$ и $C_{\Sigma}^{U}(0)$ при $z = z_{0}^{T}$, (т.е. при седлоузловой бифуркации предельных циклов) слива-

лись и исчезали (см. рис. 1*e*), то при $\mu \neq 0$ линии $C_{\Sigma}^{S}(\mu)$ и $C_{\Sigma}^{U}(\mu)$ не сливаются и продолжают существовать при $z \leq z_{0}^{T}$. Заметим, что поверхности $C_{\Sigma}^{S}(\mu)$ и $C_{\Sigma}^{U}(\mu)$ в этом случае достаточно близки друг к другу.

2.4. Пересечение и вращение многообразий

Как было отмечено выше, лини $T_1^{S}(\mu)$ пересекает в некоторых точках инвариантные кривые $C_{\Sigma}^{S}(\mu)$ и $C_{\Sigma}^{U}(\mu)$ (рис. 3). Из установленного нами поведения на Σ других следов многообразия $W_i^{S}(\mu)$ — кривых $T_i^{S}(\mu)$, $i \geq 2$, следует, что они также пересекают эти инвариантные кривые. Следовательно, существуют траектории, по которым многообразие $W_1^{S}(\mu)$ седловой траектории $L_2(\mu)$ пересекает $C^{S}(\mu)$ и $C^{U}(\mu)$. Обозначим эти траектории через Γ^{S} и Γ^{U} соответственно. Траектория Γ^{S} одновременно принадлежит многообразия $W_1^{S}(\mu)$ и $C^{U}(\mu)$ качественно изображены в виде цилиндров, а многообразие $W_1^{S}(\mu)$ — в виде «конической» поверхности. Будем рассматривать дальше лишь поведение траектории Γ^{S} , поскольку нас интересуют устойчивые колебания. Пусть при t = 0 начальные условия, соответствующие траектории $\Gamma^{S}(\mu)$, совершая быстрые вращательные движения по переменным x и y и медленно «дрейфуя» по переменной z. Одновременно с этим траектория Γ^{S} движется по сепаратрисной поверхности $W_1^{S}(\mu)$, которая имеет вид

С. Ю. Кириллов, В. И. Некоркин

«винтовой лестницы». В результате такого поведения траектория Г^S асимптотически приближается к седловой траектории $L_2(\mu)$ и вращательные движения траектории $\Gamma^{\rm S}$ на $C^{\rm S}(\mu)$ заканчиваются. Обсудим теперь, какую форму будут иметь колебательные движения на поверхности $C^{S}(\mu)$. Для этого рассмотрим вид кривых $K_i(\mu) = C^{\mathrm{S}}(\mu) \cap \{z = z_i\}$, где i = 1, 2, а z_1 и z_2 — константы. Значение $z = z_1 > z_0^{\mathrm{T}}$ и выбрано достаточно далеко от точки статической бифуркации $z_0^{\rm T}$. В этом случае кривая $K_1(\mu)$ близка по форме к предельному циклу $c^{\rm S}$ системы (5), т.е. к предельному циклу, реализующемуся при $\mu =$ $z_0 = 0$ и соответствующем значении $z_0 = z_1$ (см. рис. 5a). На левом фрагменте этого рисунка показан качественный вид, а на правом — результаты численного построения кривой $K_1(\mu)$. Кроме того, на рис. 5a тёмными точками показаны «следы» одномерных многообразий $L_i(\mu), i = 1, 2, 3,$ а точкой B — «след» траектории $\Gamma^{\rm S}$. Аналогич-

Рис. 4. Качественный вид и взаимное расположение инвариантных многообразий $C^{\rm S}(\mu), C^{\rm U}(\mu)$ и $W_1^{\rm S}(\mu)$ в фазовом пространстве G

ные данные представлены на рис. 56 для значения $z = z_2$. Кривая $K_2(\mu)$ существенно отличается от $K_1(\mu)$ и имеет достаточно сложную форму. Усложнение вида кривой $K_2(\mu)$ связано с увеличивающимся при уменьшении z влиянием многообразий седловой траектории $L_2(\mu)$ и многообразия $L_1(\mu)$, которые всё ближе подходят к поверхности $C^{\rm S}(\mu)$. Таким образом, точки на траекториях на $C^{\rm S}(\mu)$ совершают неравномерные движения, и форма колебаний, соответствующих этим траекториям, является непериодической.

3. СПАЙКОВЫЕ КОЛЕБАНИЯ

В модели (3) переменная x описывает изменение мембранного потенциала нейрона. Следовательно, траекториям на многообразии $C^{S}(\mu)$ соответствуют последовательности электрических импульсов — потенциалов действия, или спайков. На рис. 6a показаны типичные спайковые колебания, отвечающие одной из траекторий на $C^{S}(\mu)$. На первый взгляд они выглядят периодическими, но это не так. На рис. 6d представлена зависимость межспайкового интервала T_{isi} (т. е. временно́го интервала между двумя соседними максимумами на рис. 6a) от времени, которая имеет вид монотонно убывающей функции. Спайковые колебания исчезают в момент времени $t = t_{ex}$ (см. рис. 6a), после которого нейрон переходит в состояние покоя. В фазовом пространстве G это соответствует «переключению» траектории с многообразия $C^{S}(\mu)$ в окрестность устойчивого одномерного многообразия $L_1(\mu)$, отвечающего состоянию покоя нейрона.

3.1. Динамический механизм исчезновения спайковых колебаний

Выясним динамический механизм, определяющий исчезновение спайковых колебаний, и найдём значение t_{ex} . Рассмотрим поведение траектории Γ^{S} в фазовом пространстве G. Пусть при t = 0 начальные условия, соответствующие траектории Γ^{S} , лежат на замкнутой линии $K(\mu) =$ $= C^{\text{S}}(\mu) \cap \{z = I_0\}$. В соответствии с результатами раздела 2.4 траектория Γ^{S} начинает совершать вращательные движения по поверхности $C^{\text{S}}(\mu)$. Эти движения заканчиваются в момент времени,

С. Ю. Кириллов, В. И. Некоркин

2014

Рис. 5. Сечения многообразия $C^{\rm S}(\mu)$ плоскостью $z = {\rm const}$ в окрестности точки бифуркации $z = z_0^{\rm T}$: панель a соответствует значению $z = 0,210095127610 \pm 10^{-12}$, δ — значению $z = 0,210095119010 \pm \pm 10^{-12}$. На панелях слева приведены качественные виды сечений, справа — результаты численного моделирования при $\alpha = 0,5$; $\beta = 2$; $\varepsilon = 0,35$; $\mu = 10^{-11}$

Рис. 6. Исчезновение спайковых колебаний при медленном прохождении бифуркации двукратного предельного цикла: a — спайковые последовательности, b — зависимость межспайкового интервала от времени. На обеих панелях $t_{\rm bif}$ — момент прохождения точки бифуркации $z = z_0^{\rm T}$, $t_{\rm ex}$ — момент исчезновения спайковых колебаний, $\alpha = 0.5$; $\beta = 2$; $\varepsilon = 0.35$; $\mu = 3 \cdot 10^{-13}$

когда изображающая точка в отображении $P(\mu)$ достигает линии $T_1^{\rm S}(\mu)$ (см. рис. 3). Затем (см. рис. 4) траектория $\Gamma^{\rm S}$, с одной стороны, двигаясь по сепаратрисной поверхности $W_1^{\rm S}(\mu)$, асимптотически стремится к $L_2(\mu)$, а с другой — по-прежнему остаётся на поверхности $C^{\rm S}(\mu)$. Другими словами, сама поверхность $C^{\rm S}(\mu)$ некоторой своей частью асимптотически приближается к $L_2(\mu)$ (см. рис. 56). Поскольку движение траекторий в окрестности $L_2(\mu)$ не является колебательным, то и траектория $\Gamma^{\rm S}$ движется далее, не совершая вращений. Рассмотрим теперь поведение траекторий, стартующих с $K(\mu)$, но отличных от $\Gamma^{\rm S}$. Проведённое нами численное моделирование

С. Ю. Кириллов, В. И. Некоркин

показало, что любая такая траектория отталкивается от $\Gamma^{\rm S}$, продолжая движение вдоль $C^{\rm S}(\mu)$. Следовательно, траектория $\Gamma^{\rm S}$ на многообразии $C^{\rm S}(\mu)$ играет роль порога, ограничивающего область существования вращательных движений, охватывающих это многообразие. Таким образом, время исчезновения спайковых колебаний $t = t_{\rm ex}$ определяется в фазовом пространстве Gмоментом попадания траектории $\Gamma^{\rm S}$ на линию $T_1^{\rm S}(\mu)$.

Заметим, что затухающие колебания, возникающие после исчезновения спайковых колебаний, соответствуют в G траектории на поверхности $C^{S}(\mu)$, отличной от Γ^{S} . В этом случае сама поверхность $C^{S}(\mu)$ имеет (при фиксированном z) осцилляторную форму (см. рис. 5 δ), за счёт которой и формируются затухающие колебания.

3.2. Эффект задержки

Проведённое нами исследование динамики системы (3) показало, что исчезновение спайковых колебаний происходит с некоторой временной задержкой $\Delta t_{del} = t_{ex} - t_{bif}$, где через t_{bif} обозначен момент времени прохождения статической точки бифуркации предельных циклов, т. е. $t_{bif} = (I_0 - z_0^T)/\mu$. На рис. 7 показана построенная численно зависимость Δt_{del} от μ при фиксированном начальном значении переменной $z = I_0$. С увеличением параметра μ величина Δt_{del} в среднем монотонно убывает, что объясняется увеличением скорости изменения контрольного параметра, приводящим к более быстрому достижению зна-

Рис. 7. Зависимость задержки исчезновения спайковых колебаний от скорости изменения тока инжекции при $\alpha = 0.5$; $\beta = 2$; $\varepsilon = 0.35$

чения $t = t_{\text{ex}}$. Скачки на графике $\Delta t_{\text{del}}(\mu)$ связаны с существованием в системе (3) сепаратрисной поверхности $W_1^{\text{S}}(\mu)$, пересекающей $C^{\text{S}}(\mu)$ по кривой Γ^{S} . Действительно, пусть в начальный момент времени изображающая точка A принадлежит кривой $K(\mu)$ (см. рис. 5). При изменении параметра μ положение точки B, образованной пересечением траектории Γ^{S} с плоскостью $z = I_0$, относительно точки A изменяется. Для значений $\mu = \mu_j$, соответствующих скачкам на рис. 7, точки A и B совпадают. Поэтому в малой окрестности значения $\mu = \mu_j$ точки A и B имеют разное взаимное расположение слева и справа от значения $\mu = \mu_j$ (т. е. ордината точки B будет положительной для $\mu < \mu_j$ и отрицательной для $\mu > \mu_j$). Поскольку в трёхмерном фазовом пространстве сепаратрисная поверхность $W_1^{\text{S}}(\mu)$ разделяет потоки вращательных траекторий на поверхности $C^{\text{S}}(\mu)$, то различному взаимному расположению точек A и B соответствует различное число спайковых колебаний и, следовательно, различное время задержки Δt_{del} .

4. ЗАКЛЮЧЕНИЕ

Показано, что при динамической седло-узловой бифуркации циклов устойчивое и неустойчивое инвариантные многообразия не сливаются и не исчезают подобно тому, как это происходит в классической теории бифуркации, а продолжают существовать раздельно и после прохождения статического бифуркационного значения. Установлено, что вращательные движения на устойчивом инвариантном многообразии, соответствующие устойчивому режиму генерации колебаний, продолжают существовать и после прохождения точки бифуркации ещё в течение некоторого конечного времени, т. е. их исчезновение происходит с некоторой временной задержкой. Обнаружено, что время задержки исчезновения колебаний в зависимости от скорости изменения кон-

трольного параметра может быть очень большим и пренебрегать им нельзя. Установлено, что момент времени, в который исчезают колебания, определяется пороговыми свойствами сепаратрисной поверхности седловой траектории.

Применительно к задаче о моделировании нейронной активности явление задержки определяет затягивание генерации спайковых колебаний под действием медленно меняющегося тока инжекции. Изменение задержки при изменении параметров тока инжекции лежит в основе управления нейронной активностью посредством слабых управляющих сигналов [17]. В реальных экспериментах с живыми нейронами медленные синаптические токи играют ключевую роль в формировании так называемой синаптической пластичности, лежащей в основе механизмов обучения и динамической памяти [23].

Работа выполнена при поддержке РНФ (грант 14-12-01358).

ПРИЛОЖЕНИЕ

Вид кривых медленных движений $L_i(\mu)$ можно приближённо найти с помощью теории возмущений.

Обозначим медленное время через $\tau = \mu t$. Далее будем искать медленные решения (3) в виде

$$x_i(\mu) = a_i(\tau) + \mu b_i(\tau) + O(\mu^2), \qquad y_i(\mu) = c_i(\tau) + \mu d_i(\tau) + O(\mu^2), \qquad z(\mu) = z_0 - \tau, \tag{II1}$$

где индекс i = 1, 2, 3 обозначает номер соответствующей медленной кривой, $a_i(\tau), b_i(\tau), c_i(\tau)$ и $d_i(\tau)$ — медленные функции, вид которых нам предстоит найти.

Подставляя решения (П1) в (3) и разделяя переменные разного порядка малости, находим

$$a_{i}(\tau) = x_{i}^{*}(z_{0} - \tau), \qquad b_{i}(\tau) = \frac{\left\{1 - a_{i}[(\tau)]^{2} - \varepsilon\right\} da_{i}/d\tau}{\varepsilon \left(d\Phi/dx_{1} \right) \Big|_{x_{1} = a_{i}(\tau)}}, \tag{II2}$$

$$c(\tau) = 0, \qquad d(\tau) = \mathrm{d}a_i/\mathrm{d}\tau,\tag{II3}$$

где $x_i^*(z_0 - \tau)$ задаётся соотношениями (2), в которых следует сделать формальную замену $z_0 \to z_0 - \tau, 0 < \tau < z_0$.

Анализ медленного решения показывает, что на рассматриваемом участке изменения переменной z вид многообразий $L_i(\mu)$ отличается от вида соответствующих предельных многообразий $L_i(0)$ на величину порядка μ во всей рассматриваемой области изменения переменной z за исключением достаточно малой окрестности точки z = 0, соответствующей седло-узловой бифуркации.

СПИСОК ЛИТЕРАТУРЫ

- 1. Арнольд В. И., Афраймович В. С., Ильяшенко Ю. С., Шильников Л. П. Теория бифуркаций. М.: ВИНИТИ, 1985. 214 с.
- Lecture Notes in Mathematics. Springer, 1991. V. 1493. Dynamic bifurcations. / Eds. by E. Benoit. 219 p.
- 3. Нейштадт А.И. // Диф. уравнения. 1987. Т. 23, № 12. С. 2060.
- 4. Нейштадт А.И. // Диф. уравнения. 1988. Т. 24, № 2. С. 226.
- 5. Kuehn C. // Physica D. 2011. V. 240. P. 1020.

С. Ю. Кириллов, В. И. Некоркин

- 6. Maree G. J. M.// SIAM J. Appl. Math. 1989. V. 49, № 1. P. 55.
- 7. Кириллов С. Ю., Некоркин В. И. // Изв. вузов. Радиофизика. 2013. Т. 56, № 1. С. 39.
- 8. Понтрягин Л. С. // Изв. АН СССР. Сер. «Математическая». 1957. Т. 21. С. 605.
- Мищенко Е. Ф., Понтрягин Л. С. // Изв. АН СССР. Сер. «Математическая». 1959. Т. 23. С. 643.
- Мищенко Е. Ф., Розов Н. Х. Дифференциальные уравнения с малым параметром и релаксационные колебания. М.: Наука, 1975. 248 с.
- 11. Krupa M., Szmolyan P. // SIAM J. Math. Anal. 2001. V. 33, No. 2. P. 286.
- 12. Berglund N. // Progr. Theor. Phys. Suppl. 2000. V. 139, No. 1. P. 325.
- 13. Berglund N., Kuntz H. // J. Phys. A. 1999. V. 32, No. 1. P. 15.
- 14. Jung P., Gray G., Roy R., Mandel P. // Phys. Rev. Lett. 1990. V. 65, No. 17. P. 1873.
- 15. Goldsztein G. H., Broner F., Strogatz S. H. // SIAM J. Appl. Math. 1997. V. 57, No. 4. P. 1163.
- Neishtadt A.I., Simo C., Treschev D.V. // Progr. Nonlin. Diff. Equat. Their Appl. 1996. V. 19. P. 253.
- 17. Kramer M. A., Traub R. D., Kopell N. J. // Phys. Rev. Lett. 2008 V. 101, No. 6. Art. no. 068103.
- Izhikevich E. M. Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge, Mass.: MIT Press, 2007. 441 p.
- 19. Некоркин В.И., Дмитричев А.С., Щапин Д.С., Казанцев В.Б. // Мат. модел. 2005. Т. 17, № 6. С. 75.
- 20. Андронов А. А., Витт А. А., Хайкин С. Э. Теория колебаний. М.: Физматгиз, 1959. 915 с.
- 21. Ильяшенко Ю.С. Избранные задачи теории динамических систем. М.: МЦНМО, 2011. 124 с.
- 22. Fenichel N. // J. Differential Equations. 1979. V. 31, No. 1. P. 53.
- 23. Шмидт Р., Тевс Г. Физиология человека. Т. 1. М.: Мир, 2007. 323 с.

Поступила в редакцию 6 августа 2014 г.; принята в печать 2 декабря 2014 г.

DYNAMIC SADDLE-NODE BIFURCATION OF THE LIMIT CYCLES IN THE MODEL OF NEURON EXCITABILITY

S. Yu. Kirillov, and V. I. Nekorkin

Using the neuron-excitability model, we studied an analog of the saddle-node bifurcation of the limit cycles for the case of slow variation in the control parameter, i.e., the so-called dynamic saddle-node bifurcation of cycles. It is shown that the stable oscillations in such a system occur on the two-dimensional invariant manifold which also exists after the passage through the "static" bifurcation value. It is found that oscillations disappear with significant delay with respect to the oscillation-termination time which is predicted by the classical bifurcation theory. It is shown that the nonlocal model properties and, in particular, the threshold properties of the two-dimensional invariant surface of the saddle trajectory play an important role in the delay formation.