УДК 535.14.311

НЕСТАБИЛЬНОСТЬ СЛЕДОВАНИЯ ИМПУЛЬСОВ ТВЁРДОТЕЛЬНОГО ЛАЗЕРА С ДИОДНОЙ НАКАЧКОЙ ПРИ МГНОВЕННЫХ ВКЛЮЧЕНИЯХ ДОБРОТНОСТИ РЕЗОНАТОРА

А. Ф. Шаталов, Ф. А. Шаталов

Московский государственный институт радиотехники, электроники и автоматики, г. Москва, Россия

Исследована нестабильность следования импульсов твёрдотельного лазера с диодной накачкой, обусловленная случайным характером развития лазерной генерации из спонтанного излучения после включения добротности резонатора. Получены аналитические выражения для нестабильности следования импульсов лазеров с пассивной и пассивно-активной модуляциями добротности.

ВВЕДЕНИЕ

Импульсные твёрдотельные лазеры с диодной накачкой перспективны для применения в различных областях науки и техники, т. к. они отличаются высокой надёжностью и экономичностью, а также простотой устройства и эксплуатации [1, 2]. При построении на основе таких лазеров дальномеров, задающих генераторов, систем синхронизации, когерентных оптических радаров и дистанционных датчиков необходимо обеспечить высокую стабильность периода следования T, или, что то же, частоты следования F = 1/T импульсов генерации лазера [3–5].

В работах [6–8] исследована нестабильность периода следования импульсов твёрдотельных лазеров, обусловленная случайными изменениями момента включения добротности резонатора вследствие флуктуаций мощности диодной накачки, порога генерации, плотности инверсной населённости активного элемента и других параметров системы. При анализе нестабильности T в этих работах предполагалось, что генерация импульса начинается в момент включения добротностионости резонатора, т. е. в момент, когда инверсная плотность в активном элементе равна пороговой плотности [6–8]. Влияние квантовых флуктуаций спонтанного излучения на начало лазерной генерации после включения добротности и, соответственно, на стабильность периода следования импульсов лазера в работах [6–8] не рассматривалось. Однако именно эти флуктуации вносят основной вклад в нестабильноть периода следования импульсов, если их генерация осуществляется путём мгновенного включения добротности резонатора [9].

Цель настоящей работы — исследовать нестабильность периода следования импульсов твёрдотельного лазера с диодной накачкой при мгновенных включениях добротности резонатора.

1. ТЕОРЕТИЧЕСКАЯ МОДЕЛЬ

Для исследования влияния квантовых флуктуаций спонтанного излучения на стабильность периода следования импульсов генерации твёрдотельного лазера с диодной накачкой используем систему скоростных уравнений для плотности ϕ фотонов в резонаторе и плотности n инверсии населённостей в активном элементе лазера [10]:

$$d\phi/dt = \left[2\sigma nd - 2\sigma_{\rm s}n_{\rm s}d_{\rm s} - 2\sigma_{\rm es}n_{\rm es}d_{\rm s} - \ln(1/R) - L\right]\phi/t_{\rm r},\tag{1}$$

$$dn/dt = n_{\rm p} - n/\tau - \gamma \sigma c \phi n, \qquad (2)$$

А. Ф. Шаталов, Ф. А. Шаталов

652

где $n_{\rm s}$ и $n_{\rm es}$ — плотности населённостей нижнего и возбуждённого уровней пассивного модулятора, σ — эффективное сечение индуцированных переходов активного элемента, $\sigma_{\rm s}$ и $\sigma_{\rm es}$ — сечения поглощений нижнего и возбуждённого уровней пассивного модулятора, d — толщина активного элемента, $d_{\rm s}$ — толщина пассивного модулятора, R — отражательная способность зеркал резонатора, L — пассивные потери при полном проходе светом длины резонатора, исключая потери в пассивном модуляторе, γ — коэффициент вырождения инверсии в активного элемента, $t_{\rm r} = 2l'/c$ — время мизни верхнего лазерного уровня активного элемента, $t_{\rm r} = 2l'/c$ — время полного прохода светом длины резонатора, $c = 3 \cdot 10^8$ м/с — скорость света в вакууме, l' — оптическая длина резонатора лазера.

В уравнениях (1) и (2) не учитываются квантовые флуктуации спонтанного излучения в резонаторе, влияющие на генерацию лазера. Для учёта этих флуктуаций используем, аналогично [11], фактор β спонтанного излучения в моду резонатора. В этом случае уравнение (1) запишем в виде

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = \left[2\sigma nd - 2\sigma_{\mathrm{s}}n_{\mathrm{s}}d_{\mathrm{s}} - 2\sigma_{\mathrm{es}}n_{\mathrm{es}}d_{\mathrm{s}} - \ln\left(\frac{1}{R}\right) - L\right]\frac{\phi}{t_{\mathrm{r}}} + \beta q\,\frac{n}{\tau}\,,\tag{3}$$

где q — квантовый выход люминесценции. Член $\beta qn/\tau$ в уравнении (3) равен средней скорости спонтанного излучения в генерируемую лазером моду в единице объёма активного элемента. В момент достижения пороговой плотности инверсии n_i она будет определяться выражением $\beta n_i V_a q/\tau$, где V_a — занимаемый модой объём внутри активного элемента. Изменение δF плотности F потока фотонов вдоль оси z резонатора внутри активного элемента за счёт вынужденных излучательных переходов можно записать в виде [12]

$$\delta F = \sigma F n_{\rm i} \, \delta z,\tag{4}$$

где $F = \beta n_i V_a q / (\tau S), S = \pi D^2 / 4$ — эффективная площадь поперечного сечения моды в активном элементе, D — диаметр сечения, $V_a = Sd, \, \delta z = c \, \delta t / n_a, \, n_a$ — показатель преломления материала активного элемента.

В нашей модели начало генерации лазера после включения добротности резонатора имеет вероятностный характер и описывается функцией p(t). В большинстве случаев момент начала генерации соответствует времени, меньшему, чем характерное время $\delta t = \tau_{\rm in}$ появления в резонаторе первого (одного) вынужденного фотона

$$\delta F \, S \tau_{\rm in} = 1,\tag{5}$$

а нестабильность периода следования импульсов лазера определяется, соответственно, временем $\tau_{\rm in}.$

Используя (4) и (5), получим выражение для времени τ_{in} :

$$\tau_{\rm in} = \left(\frac{\tau n_{\rm a}}{\beta q \sigma V_{\rm a} c}\right)^{1/2} \frac{1}{n_{\rm i}}.$$
(6)

Так же, как параметры β и σ определяют соответственно вероятности попадания спонтанного фотона в моду генерации и вызванного им излучения вынужденного фотона, параметр $\tau_{\rm in}$ определяет вероятность возникновения генерации лазера после включения добротности резонатора. По аналогии с процессом спонтанного излучения, который обусловлен нулевыми флуктуациями электромагнитного поля [12], в нашей модели величина $1/\tau_{\rm in}$ равна вероятности начала генерации лазера за единицу времени, а вероятность начала генерации за время t после включения добротности $p(t) = 1 - \exp(-t/\tau_{\rm in})$. При $t = \tau_{\rm in}$ вероятность p = 0.63.

Если генерация импульсов лазером осуществляется мгновенным включением добротности [9], то в этом случае нестабильность периода следования импульсов лазера будет определяться в основном временем $\tau_{\rm in}$ (6). Оценим это время для лазеров на активированных неодимом кристаллах алюмоиттриевого граната YAG:Nd и кальций-галлий-германиевого граната CGGG:Nd [13]. Для YAG:Nd-лазера [13] концентрация ионов неодима $n_{\rm Y} = 0.8 \cdot 10^{20}$ см⁻³, радиационное время жизни верхнего лазерного уровня $\tau_{\rm Y} = 230$ мкс, эффективное сечение индуцированных переходов $\sigma_{\rm Y} = 3.2 \cdot 10^{-19}$ см², толщина активного элемента $d_{\rm Y} = 4.1$ мм, а для CGGG:Nd-лазера [13] аналогичные величины соответственно равны $n_{\rm C} = 2.0 \cdot 10^{20}$ см⁻³, $\tau_{\rm C} = 220$ мкс, $\sigma_{\rm C} = 1.4 \cdot 10^{-19}$ см², $d_{\rm C} = 1.5$ мм. Для обоих лазеров эффективный диаметр моды в активном элементе D одинаков и равен 90 мкм [13]. При $n_{\rm a} = 1.5$; q = 1, $\beta = 10^{-5}$ [11] и плотности инверсии населённостей $n_{\rm i}$, равной концентрации ионов неодима, получим $\tau_{\rm inY} = 1.5 \cdot 10^{-13}$ с и $\tau_{\rm inC} = 3.1 \cdot 10^{-13}$ с. Полученные значения для $\tau_{\rm inY}$ и $\tau_{\rm inC}$ на несколько порядков меньше характерных нестабильностей периода следования импульсов YAG:Nd и CGGG:Nd-лазеров [14] и представляют собой, по-видимому, предельно малые нестабильности для этих устройств.

Для более корректной оценки τ_{in} по формуле (6) необходимо учесть несколько обстоятельств. Первое, время τ для активного элемента в резонаторе меньше времени τ , приводимого в таблицах и измеряемого для активного элемента вне резонатора [15]. Второе, плотность инверсии населённостей n_i , соответствующая моменту начала генерации лазера, может быть меньше концентрации ионов активатора. Для лазера с одним пассивным модулятором n_i зависит от параметров пассивного модулятора, активного элемента, а также от R и L [7]. В случае лазера с пассивным и активным модуляторами в резонаторе $n_i = n_p \tau$ [8]. И третье, фактор спонтанного излучения β зависит от многих параметров лазера и требует отдельного изучения.

2. ОЦЕНКА ФАКТОРА СПОНТАННОГО ИЗЛУЧЕНИЯ

Фактор спонтанного излучения равен доле спонтанных фотонов, излучаемых ионами активатора активного элемента лазера в том же угловом направлении и в той же спектральной полосе, что и сама мода лазера или, что то же вероятности попадания спонтанного фотона в генерируемую моду лазера.

Угловое направление, соответствующее моде лазера, определим как удвоенный (вследствие существования двух направлений вдоль оси резонатора) телесный угол $2\Omega_d$, соответствующий дифракционной расходимости

$$\theta_{\rm d} = \alpha \, \frac{\lambda}{D} \,, \tag{7}$$

где λ — длина волны лазерного излучения, а числовой коэффициент α приблизительно равен единице: $\alpha = 1,22$ при равномерном распределении интенсивности по диаметру D, и $\alpha = 2/\pi$ при гауссовом поперечном распределении интенсивности; в последнем случае в качестве D берётся диаметр перетяжки гауссова пучка [12]. Телесный угол $\Omega_{\rm d} = \pi \theta_{\rm d}^2$. Считая, что спонтанное излучение одинаково вдоль любого направления в пространстве, т. е. что оно равномерно распределено в пределах телесного угла 4π стерадиан, получим выражение для вероятности попадания спонтанно излучённого фотона в телесный угол $2\Omega_{\rm d}$:

$$P_{\Omega} = \frac{\alpha^2 \lambda^2}{2D^2} \,. \tag{8}$$

Вероятность того, что частота спонтанно излучённого фотона лежит в интервале $\nu \div \nu + d\nu$ равна $g(\nu - \nu_0) d\nu$ [12], где $g(\nu - \nu_0) -$ форма линии излучения, $\int_{-\infty}^{+\infty} g(\nu - \nu_0) d\nu = 1$, $\nu_0 -$ частота центра линии. В случае однородного уширения линии, когда резонансная частота ν_0 и форма

А. Ф. Шаталов, Ф. А. Шаталов

654

контура линии перехода одинаковы для всех атомов активатора, $g(\nu - \nu_0)$ даётся лоренцевой функцией $g_{\rm L}(\nu - \nu_0)$:

$$g(\nu - \nu_0) = g_{\rm L}(\nu - \nu_0) = \frac{2}{\pi \,\Delta\nu_0} \,\frac{1}{1 + [2\,(\nu - \nu_0)/\Delta\nu_0]^2}\,,\tag{9}$$

где $\Delta \nu_0$ — полная ширина контура линии $g_{\rm L}(\nu - \nu_0)$ между двумя её точками, имеющими интенсивность, равную половине максимальной. Максимум функции $g_{\rm L}(\nu - \nu_0)$ находится на частоте $\nu = \nu_0$ и равен $K_{\rm L}/\Delta \nu_0$, где $K_{\rm L} = 2/\pi = 0.64$.

При неоднородном уширении линии спонтанного излучения резонансные частоты ν'_0 атомов распределены вблизи некоторой центральной частоты ν_0 , а функция $g(\nu - \nu_0)$ описывается свёрткой функции $g_{\rm G}$ и гауссовой функции $g_{\rm G}$ [12]:

$$g = \int_{-\infty}^{+\infty} g_{\rm G}(x) g_{\rm L}[(\nu - \nu_0) - x] \,\mathrm{d}x, \tag{10}$$

где $x = \nu'_0 - \nu_0$. Когда резонансные частоты всех атомов одинаковы, (10) переходит в (9). Если же ширина контура линии перехода одиночного атома $g_{\rm L}(\nu - \nu'_0)$ на много меньше ширины распределения $g_{\rm G}(\nu'_0 - \nu_0)$, обусловленного неоднородным уширением, т. е. реализуется случай чисто неоднородного уширения, то форма (10) переходит в гауссову линию

$$g(\nu - \nu_0) = g_{\rm G}(\nu - \nu_0) = \frac{2}{\Delta\nu_0} \left(\frac{\ln 2}{\pi}\right)^{1/2} \exp\left[-\frac{4\left(\nu - \nu_0\right)^2}{(\Delta\nu_0)^2}\ln 2\right].$$
 (11)

Максимальное значение функции $g_{\rm G}$ достигается при $\nu = \nu_0$ и равно $K_{\rm G}/\Delta\nu_0$, где $K_{\rm G} = 2 (\ln 2/\pi)^{1/2} = 0,94$. Полная ширина по половине высоты контура $g_{\rm L}(\nu - \nu_0)$ для однородного уширения вследствие спонтанного излучения определяется только свойствами данного перехода. Она называется естественной или собственной шириной линии перехода и равна $\Delta\nu_0 = 1/(2\pi\tau_{\rm r})$, где $\tau_{\rm r}$ — излучательное, или радиационное, время жизни верхнего уровня перехода.

Поскольку ширина $\Delta \nu_{\rm l}$ спектра лазерного излучения обычно значительно, вплоть до 10 порядков, меньше, чем ширина линии перехода спонтанного излучения [12], то для оценки вероятности попадания частоты ν спонтанно излучённого фотона в интервал $\Delta \nu_{\rm l}$ можно использовать выражение $g(0) \Delta \nu_{\rm l}$, где $\Delta \nu_{\rm l} = 1/(2\pi\tau_{\rm l})$, $\tau_{\rm l}$ — время жизни фотона в резонаторе лазера и предполагается, что рабочая мода резонатора совпадает с максимумом контура g. Учитывая, что $\tau_{\rm l} = l'/(c\gamma_{\rm l})$ [12], где $\gamma_{\rm l}$ — полные логарифмические потери за проход света в резонаторе лазера, а $n_{\rm i} = \gamma_{\rm l}/(\sigma d)$, получим выражение для оценки фактора спонтанного излучения

$$\beta = \frac{K\alpha^2\lambda^2}{2D^2} \frac{\Delta\nu_1}{\Delta\nu_0} = \frac{K\alpha^2\lambda^2 cn_i\sigma d}{4\pi D^2 l'\,\Delta\nu_0},\tag{12}$$

где $K = K_{\rm L}$ при однородном и $K = K_{\rm G}$ при неоднородном уширениях линии. Соотношение (12) показывает, что фактор β спонтанного излучения пропорционален квадрату дифракционной расходимости $\alpha^2 (\lambda/D)^2$ и отношению $\Delta \nu_{\rm l}/\Delta \nu_0$ полных ширин по половинным высотам спектров лазерного и спонтанного излучений. При D = 100 мкм и $\lambda = 1$ мкм оценочное значение фактора спонтанного излучения изменяется в соответствии (12) от 10^{-5} до 10^{-15} в зависимости от отношения $\Delta \nu_{\rm l}/\Delta \nu_0$. При $\beta = 10^{-15}$ времена $\tau_{\rm inY}$ и $\tau_{\rm inC}$ для лазеров YAG:Nd и CGGG:Nd [13], определяемые квантовыми флуктуациями спонтанного излучения, составляют 15 и 31 нс соответственно, что на три порядка превышает нестабильность периода следования импульсов твёрдотельного

А. Ф. Шаталов, Ф. А. Шаталов

655

лазера с диодной накачкой, рассмотренного в работе [16]. Последнее обстоятельство показывает необходимость учёта влияния квантовых флуктуаций спонтанного излучения на стабильность периода следования импульсов лазера при оптимизации его параметров.

Используя (6) и (12), получим выражения для нестабильности периода следования импульсов твёрдотельного лазера с диодной накачкой и одним пассивным модулятором в резонаторе при мгновенных включениях добротности:

$$\tau_{\rm in} = \frac{4}{\alpha\lambda c\sigma d} \left(\frac{l' n_{\rm a}\tau \,\Delta\nu_0}{Kq}\right)^{1/2} n_{\rm i}^{-3/2}.\tag{13}$$

Для лазера с пассивным и активным модуляторами в резонаторе, когда $n_{\rm i} = n_{\rm p} \tau$, выражение (13) переписывается в виде

$$\tau_{\rm in} = \frac{4}{\alpha\lambda c\sigma\tau d} \left(\frac{l'n_{\rm a}\,\Delta\nu_0}{Kq}\right)^{1/2} n_{\rm p}^{-3/2}.\tag{14}$$

Из (13) и (14) следует, что у лазера с одним пассивным модулятором $\tau_{\rm in}$ пропорционально $n_{\rm i}^{-3/2}$, а у лазера с пассивным и активным модуляторами $\tau_{\rm in}$ пропорционально $n_{\rm p}^{-3/2}$.

При $\alpha \approx 1$, $q \approx 1$, когда $\tau \approx \tau_{\rm r}$, $l' \approx n_{\rm a}d$, т. е. когда активный элемент практически полностью заполняет объём резонатора, $K = K_{\rm L} = 0.64$; $\tau_{\rm r} \Delta \nu_0 = 1/(2\pi) \approx 0.16$ и выражения (13) и (14) переписываются соответственно в виде

$$\tau_{\rm in} = \frac{2n_{\rm a}}{\lambda c\sigma d^{1/2} n_{\rm i}^{3/2}} \tag{15}$$

И

$$\tau_{\rm in} = \frac{2n_{\rm a}}{\lambda c \sigma \tau^{3/2} d^{1/2} n_{\rm p}^{3/2}} \,. \tag{16}$$

Выражения (15) и (16) показывают характер зависимости τ_{in} от σ , d, τ , n_i и n_p при естественном однородном уширении линии спонтанного излучения.

Полученные в рамках приведённого анализа приближённые аналитические выражения (13) и (14) облегчают проведение практических оценок и оптимизацию параметров лазера с целью уменьшения нестабильности периода следования его импульсов. Для повышения точности результатов необходимо привлечение квантово-электродинамического подхода [17, 18]. Однако в последнем случае возможности анализа ограничиваются обычно только численными оценками.

3. ЗАКЛЮЧЕНИЕ

Исследована нестабильность периода следования импульсов твёрдотельного лазера с диодной накачкой при мгновенных включениях добротности резонатора. Получены приближённые аналитические выражения для характерной флуктуации $\tau_{\rm in}$ периода следования импульсов, обусловленной случайным характером развития лазерной генерации из спонтанного излучения после включения добротности. Для лазера с одним пассивным модулятором в резонаторе $\tau_{\rm in}$ пропорционально $n_{\rm i}^{-3/2}$, а с пассивным и активным модуляторами — $n_{\rm p}^{-3/2}$, где $n_{\rm i}$ — пороговая плотность инверсии населённостей, а $n_{\rm p}$ — скорость диодной накачки.

Авторы выражают благодарность Л. Д. Алексеевскому, Ю. В. Коробкину и В. А. Лебедеву за обсуждение результатов работы.

Работа поддержана РФФИ (грант 09–08–01114) и Рособразованием (госконтракт 2.1.1/473).

А. Ф. Шаталов, Ф. А. Шаталов

СПИСОК ЛИТЕРАТУРЫ

- 1. Lai N. D., Brunel M., Bredenaker F., Floch A. L. // Appl. Phys. Lett. 2001. V. 79, No. 8. P. 1073.
- 2. Кравцов Н. В. // Квантовая электроника. 2001. Т. 31, № 8. С. 661.
- 3. Wang X., Zu Z. // Opt. Express. 2005. V. 13, No. 18. P. 6693.
- 4. Nodop D., Limpert J., Hohmuth R., et al. // Opt. Lett. 2007. V. 32, No. 15. P. 2115.
- Shatalov A. F., Belovolov M. I. // Int. Conf. "Laser Optics 2008", June 23–28, 2008, St. Petersburg, Russia. Paper ThR1-p32. P. 58.
- 6. Khurgin J. B., Jin F., Solyar G., et al. // Appl. Opt. 2002. V. 41, No. 6. P. 1095.
- 7. Шаталов А. Ф., Шаталов Ф. А. // Изв. вузов. Радиофизика. 2009. Т. 52, № 4. С. 337.
- 8. Шаталов А. Ф., Шаталов Ф. А. // Изв. вузов. Радиофизика. 2010. Т. 53, № 4. С. 279.
- 9. Прохоров А. М. // Радиотехника и электроника. 1963. Т. 8, № 6. С. 1073.
- 10. Degnan J. J. // IEEE J. Quantum Electron. 1995. V. 31, No. 11. P. 1890.
- 11. Кравцов Н. В., Ларионцев Е. Г. // Квантовая электроника. 2009. Т. 39, № 11. С. 1045.
- 12. Звелто О. Принципы лазеров. М.: Мир, 1990. 560 с.
- 13. Шаталов А.Ф., Шаталов Ф.А. // Приборы и техника эксперимента. 2009. № 6. С. 99.
- 14. Беловолов М.И., Шаталов А.Ф. // Квантовая электроника. 2008. Т. 38, № 10. С. 933.
- 15. Шаталов А. Ф., Шаталов Ф. А. // Метрология. 2009. № 7. С. 33.
- 16. Hansson B., Arvidsson M. // Electron. Lett. 2000. V. 36, No. 13. P. 1 123.
- 17. Ханин Я.И. Динамика квантовых генераторов. Т.2. М.: Сов. радио, 1975. 496 с.
- 18. Ахманов С. А. Дьяков Ю. Е., Чиркин А. С. Введение в статистическую радиофизику и оптику. М.: Наука, 1981. 640 с.

Поступила в редакцию 2 ноября 2010 г.; принята в печать 30 ноября 2010 г.

PULSE INTERVAL JITTER OF A DIODE-PUMPED SOLID-STATE LASER WITH INSTANTANEOUS Q-SWITCHING OF THE RESONATOR

A. F. Shatalov and F. A. Shatalov

We study the pulse interval jitter of a diode-pumped solid-state laser due to random development of lasing from spontaneous emission after Q-switching of the resonator. Analytical expressions are obtained for the pulse interval jitter of lasers with passive and passive-active Q-switching.