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OPTIMIZING NEURAL NETWORK ARCHITECTURES
USING GENERALIZATION ERROR ESTIMATORS

J.Larsen

This paper addresses optimization of neural network architectures.
It is suggested to optimize the architecture by selecting the model with
minimal estimated averaged generalization error.

We consider a least-squares (LS) criterion for estimating neural net-
work models, i.e., the associated model weights are estimated by mini-
mizing the LS ctiterion. The quality-of a particular estimated model is

. measured by the average generalization error. This is defined as the ex-
pected squared prediction error on a novel mput-—output sa.mple averaged
_over all possible training sets.

An essential part of the suggested architecture optumzatlon scheme is
to calculate an estimate of the average generalization error. We suggest
to use the GEN-estimator [9, 10] which allows for dealing with nonlin-
ear, incomplete models; i.e., models which are not capable of modeling
the underlying nonhneat relatlonshlp perfectly. In most neural network
applications it is impossible to suggest a perfect modei and consequently
the ability to handle incomplete models is urgent. .

A concise derivation of the GEN-estimator is provided, and its qual-
‘ities is demonstrated by comparative numerical studies.

1. INTRODUCTION

~ Selection of proper model architectures from a finite training set is a fun-
damental issue for application of neural network models. In connection with
multi-layer feed—forward networks the model architecture is determined by the
number of layers, the number of units within the layers, and the connectivity
 among adjoining layers. The objective is to design a.rc.hitectures‘_' with high
quality which — in this work — is expressed in terms of the generalization
error defined as the expected squared prediction error !; that is, the mean
square error on a novel random sample which is independent on the samples
used for training of the network.
' The paper addresses the possibility of optimizing the model architecture
by using generalization error estimates. Contemplate a set of candidate ar-
chitectures; then for each architecture estimate the generalization error, and -
select the architecture with minimal estimated generalization error.

lIn the literature also known as the prediction risk (e g [11]) or the mtegra.tcd :
- mean square error.
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Consider the following data genex:a.ting nonlinear system:
yh)=g(et) +ek) I

where the scalar output, y(k), (k is the discrete time index) is generated as
the sum of a nonlinear mapping, g(-), of the input vector «(k) and an additive
noise ¢(k). '

Assumption 1. The input @(k) and the inherent noise (k) are assumed
 to be strictly stationary sequences. Furthermore, E{¢(k)} = 0 and E{e?(k)} =
‘=02 < 00. : ;

Let F be a set of nonlinear functionals parameterized by an m-dimensional
weight vector w = [wy, w3, ..., wm]T (7 denotes the transpose operator). In
general it is assumed that the functionals are nonlinear in w. Multi-layer feed—
forward neural networks with hidden units are examples of F. Let f()erF
then the non-recursive model with additive error is defined by:

9B = fla®y W) be(lw) (2

- where e(k; w) is the additive error 2. The prediction of y(k), say §(k), is given
by _ o
§(k) = fl=(k); w). . (3)

When referring to a nonlinear model, f(-) is considered to be nonlinear in the
- weights; otherwise, the model is linear, i.e., §(k) = w T 2(k).

Normally neural networks models are used in situations where only scanty
structural knowledge of the "true” system g(-) is available. This may be due
to the fact that the task possesses a very complex nature which — more or less
— precludes conventional approaches. In such cases neural network models
are flexible tools since they carry the universal approximation ability, see e.g.,
[7]. However, the framework involves some hurdles:

 In general, the neural network model does not enable interpretations
of the structure of g(-); in fact the purpose of model design is here
considered to be low generalization error, i.e., high prediction accuracy.

e Both the weights and the model architecture have to be estimated from
data. Consequently, it is expected that a relatively large data set is
required. § ' X

e Models with a finite number of weights are infrequently capable of mod- -
eling the system perfectly. , 8

?Note the dependence on the weights sometimes is accentuated.
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In connection with the last item we make the following definition:

Definition 1. If 3w°; Ve : g(z) = f(z; w®) the model is signified as
complete otherwise as incomplete. w® is denoted the true weight vector.

Consequently, we claim that most neural network models are incomplete.

The paper is organized as follows: In Section 2 the fundamentals of train-
ing and generalization are presented. Various generalization error estimators
are reviewed in Section 3, and the GEN-estimator 2 [9, 10] is suggested for
the estimating the generalization error of nonlinear, incomplete models. Sec-
tion 4 provides some comparative numerical experiments which illustrate the
properties of the GEN-¢stimator, and finally Section 5 states the conclusions.

2. TRAINING AND GENERALIZATION

Given a training set: 7 = {(k), y(k)}, k=1,2,..., N, where N is the
training set size, the model is estimated by minimizing some cost function, say
Sn(w). In this work the classical least squares (LS) cost is employed *:

2 i & 2
Swiw) = X ik w) = 3 [v0) - flalip )] . (4)
=1 .

k=1

Assumption 2. Define Q as the m-dimensional weight spéce. Assume
that @ uniquely minimizes Sy(w) within a compact subset W C 0, and
furthermore A '

OSn(®) _ 7 0%Sn(®)
dw SwiéwT

Note that i is merely a particular minimizer and not necessarily the global

minimum — even though it is preferred. The occurrence of multiple minima

— including the global — is well-known for feed-forward neural networks,
. €.g., due to symmetries as mentioned in e.g., [5].

The training performance Sy () is usually not a reliable measure of the
quality of a model because it depends on the actual training set. A reliable
quality measure is the generalization error, G, (e.g., 11, 12]) which is defined
as the expected, squared prediction error on a test sample, {@:, v} (denot-
ing t for test), which is independent of the training set but with identical
distribution, i.e.,

a>0, Va#0. (5)

G(w) = Ez.,eg{[y: - f(=s ‘U’)Iz}- (6)

*Generalization error estimate for incomplete nonlinear models.
*A more sophisticated cost function which incorporates a regularization term —
like weight decay regularization (see e.g., [6] — is considered in [10].
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Egp, ¢ {} denotes expectation with respect to the joint p.d.f. of (2, &¢]. We
mainly focus on the generalization error evaluated at the estimated weights,
i.e., G(#@); however, consider also G(w) as a function of the weights. In that
context we state the following assumption:

Assumption 3. Assume the existence of a compact subset W* C (1 such

that the optimal weight vector w* uniquely minimizes G(w) within W*, and
furthermore
* 2 w*
a%(:)ﬂ’ GT%%‘.”T)aw, Va # 0. (1)
Note that the optimal weight vector reflects the "best” model within the actual
set F and within the compact subset W*; that is, the model obtained by
training on an infinite training set °. '

The generalization error of the estimated model, G(®), depends on the
present training set through i; consequently, if another training set of equal
size where employed another generalization error emerges. The reason we
believe that the model under consideration is pretty bad or good could be due
to the nature of the actual training set rather than the chosen architecture.
In order to eliminate such effects we focus on the average generalization error

defined by:

I' = Er{G(®)} (8)
where Er{-} denotes expectation w.r.t. to the training set, 7. Note that
determination of T requires knowledge of the system, the model and the joint
p.df. of [z, €]; q.e, generally this quantity is not accessible. HOwowever, it
is still possible to suggest various estimators, which is the topic of the next
section.

3. GENERALIZATION ERROR ESTIMATION

In e literature several attempts have been made in order to estimate the
generalization error of both linear and nonlinear models. Direct methods are
based on cross-validation techniques, see e.g., [2, Sections 6.8 & 8.3], which
are advantageous since they only require mild conditions on the error signal.
The usual cross—validation estimator (called the C—estimator) consist in using -
N — N, of the samples in the training set for estimation of the weights (i.e.,
@®). The remaining — preferably independent — N, samples for calculating
the generalization error estimate as the average of the squared error signal,

ie., . N
D=5 Y kD) (9)

Ne k=N—-N.+1

5This is due to the fact that limy.....Sx(w) = G(w) provided that e?(k; w) is a
mean—ergodic sequence.
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where the index v is defined as v = N — N./N -100%. The setting of N,
— or equivalently, v — involves a bias/variance trade off. On the one hand
N, should be small so that all data can be used for training (small bias); on
the other hand N. should be large to obtain small variance since (under mild
assumptions) limy, e Cy = G(@).

A different cross-validation estimate is the leave—one—out cross—validation
estimate (L—estimate)., The idea is to successively leave out one sample in the
training set for cross-validation and then use the rest for training °, i.e., '

L(T) =+ Z e?(j; @), (10)

J"'l

where @0) is the weight estimate obtained by training on the training set:
{=(k); y(k)},

E = 28 voey N, i=1
E = 1,2...,5-1,j+1,...,N, je[2; N-1] (11)
k= 1,2 ..., N~1, j=N.

Notice that in the L—estimator N — 1 samples are used for training, i.e., we
expect a small bias 7. On the other hand, the variance may still be significant.

Indirect methods are based on deriving algebraic expression for the average
generalization error from various assumptions on the system and the model.
The immediate benefits are:

e All data can be used for training.

e It is possible to understand how characteristic parameters such as the
number of weights and training samples influence the generalization er-
ror.

The classical Final Prediction Error estimator (FPE) [1] and the FIS-estimator
[3] focus on complete models, while [8] and the Generalized Prediction Error
estimator (GPE) [11, 12] focus on incomplete models, which are claimed to be
the most common in a neural network modeling context.

In [8] a generalization error estimator for linear incomplete models is de-
veloped. The estimate requires knowledge of the estimated weights @;, i =
=m+1, m+2, ..., m° where m® denotes the dimension for which the model
becomes complete. Unfortunately, these estimated weights are not accessible
when fitting with only m weights. Therefore, the final result of [8] is essentla]ly
the FPE-estimator.

€The leave—one—out cross—validation technique is a special case of the general leave-
v—out technique.
1'It should be emphasized that dependence among the samples causes extra bias.
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The GPE-estimator [11, 12] is claimed to estimate the generalization error
for both nonlinear and incomplete (in [11] denoted biased) models when using
the sum of Sy(w) (the LS cost function) and a regularization term as the cost
function. However, in Section 3.1 which presents the GEN-estimator [9, 10]
with validity for both incomplete and nonlinear models, it is established that
the error, e(k; w), and the input, 2(k), are not independent unless the model
is complete. This dependence is not taken into account in the GPE—-estimator.

3.1. The generalization error estimator
for incomplete nonlinear models

In this subsection the generalization error estimate for incomplete nonlinear
models, called GEN is presented. The estimator can be viewed as an ex-
tension of the FPE- and GPE-estimators. The advantages and drawbacks
encumbered with the GEN-estimator are:

Advantages:

e All data in the training set are used for estimating the weights. This is
especially important in situations where training data are sparse. This
is not the case when considering the cross—validation estimators.

e The model may be nonlinear as well as linear in the weights.

e Both incomplete and complete models are treated.

e The input and the noise may in general be correlated and dependent.
. Noiseleés systems are also considered.

e The weight estimate, @, is not required to be the global minimum of the
cost function.

o It is ensured that the estimator becomes an estimator of T, i.e., the
estimate provides for fluctuations in both the input and the inherent
noise and in that way extending the GPE-estimator.

Drawbacks 8:
e A fundamental condition is _that the .tra.in.ing set is large; however, all

considered estimators in fact require this assumption.

e The model is assumed to be properly approximated in the vicinity of @
by a linear expansion in the weights.

e The weight estimate, @, is assumed to be locally unique, and the cost
function is required to have a non-zero curvature around .

*The assumptions mentioned also enter the derivation of the FPE- and GPE-
estimators. ;
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e Only local effects due to ﬂuctua.tlons in the Welght estimate are consid- -
ered ?.

Training algorithm effects are not considered 1°. That means, normally
the trauung procedure result in an estimate different from @ which lo-
cally minimizes Sy(w).

In order to ensure the validity of the GEN—estl.mator we state some addi-
tional assumptions:

Assumption 4. z(k) is an M -dependent stationary sequence, i.e., 2(k), (k+
+7) are independent V |T| > M.(A weaker assumption is that m(k) is.a strongly

mixing. sequence [13, p.62]).

Assumption 5. Let the minimization of Sn on the training set result in
the estimate: @ 1'. Assume the existence of an optimal weight vector w*,
define the weight fluctuation, Aw = # — w*, and let E denote the region of
validity around w*. While Aw € E the remainders of the following second
order Taylor series expansion are assumed negligible: o

G(®) ~ G(w") + Aw H(w")Aw - (12)
where H(w*) is the nonsingular (by Eq.(7)) Hessian matrix |

Bw) = 3260 _ g, {o o @) -2, (1)

Py(w*) = 8f(2:; w*)/Ow and ¥,(w*) = Ogp(z,; w*) /0w . -
. Further, assume that the remainders of expanding SN around @ to the
second order are negligible, i.e.,

Sn(w") = Sn(®) + Aw Hy(®)Aw (14)
where H N(w) is the nonsmgula.r Hessian gnren by |

Hy(® )-%‘ZS’;}”‘?}’ N§¢(k @) (4 8) ~ #(5 @)l @), (15)

(k W) = 8f(=(k); w)/@w and ¥(k; ) = 8¢(z(k), w)faw

By that, we explicitly mean ﬂuctua.tlons which take place within the hypersphere,
E, cf.As.5.

%In [4] the effects of training with the back-propa.gahon algorithm (see e.g., [6])
are taken into account. The considered models are linear and complete. .

1 Note that the weight estimate is highly dependent on the chosen weight estimation
algorithm due to local optimization, initial conditions, etc. An alternative algorithm
used on the same training set may therefore result in a different weight estimate.
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A
. SN(W)
Optimal * ¥ , - Cost Function
Parameters ¥y  Estimated C
Parameters
> W

Fig. 1. Example of cost function Sy(w) and generalization error G(w) which fulfill
' . As.5. - ' '

In Fig.1 an example of a cost function which fulfill As.5 is shown.

Assumption 8. Assume large training sets, i.e., N — oo and N> M where -
M is the dependence length defined in As.4. Further, assume that m is finite.

Definition 2. Prowided that the system 1% and the model is defined by
Eq.(1), (2) and the As.2 through As.6 hold then GEN is defined as a consistent
(N — ) estimator of T, Eq.(8).

Theorem 1. Suppose that the system and the model are given by Eq.(1), (2)
and the model is incomplete or alternatively complete with the restriction
that w* defined by As.3; As.5 is not the global optimum of G(w). Further,
suppose that As.2 through As.6 hold. The GEN-estimate is then given by:

| P
GEN = sn(ea)+%-fr[(n(unzig—_’—(n(rn

=1

+ RT(r)))Hsr‘ta)] ' o

13The formulation in this paper is based on a data generating system given by
Eq.(1). This system definition is appealing as regards intérpretation; however, it is
possible give a formulation which does not require an explicit system definition. The
final result of the estimator is unchanged.
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where t[-] is the trace operator, and the correlation matrices R(r),0<T7< M
are calculated as: '

N-1 ' ; ¥
R(r) =+ Y 9k @)ell; D) (k47 D)e(k 47 B).  (17)

k=1

Al

Sketch of Proof and Discussion. The basis of the proof is the Taylor series
cxpansions given in Eq.(12), (14) and an order, o(1/N), expansion. It turns
out that the GEN-estimator is an unbiased estimator of I' to o(1/N) under
the stated assumptions.

Taking the expectation, Er{-} (i.e., wr.t. the training set) of Eq.(12),
(14) it is possible to substitute Eq.(14) into Eq.(12) by using the identity

Er{Sn(w")} = Er{G(w")}. : . (18)

That is, this enables an expression for I' = E7{G(®)} in terms of training
data. When evaluating the expectations it is important to notice that the
error (cf. Eq.(1) and (2))

(ks w) = £(k) + 9(@(k) - fla(Ry; w) . (19)

depends both on (k) and e(k) unless the model is complete and w* is the
global optimum since g(z) = f(2; w*) in that case '*. In [10] the details of
the proof are given and the estimate is further extended to treat other cost
. functions, for instance the LS—cost with inclusion of a regularization term —
e.g., weight decay regularization. It should be noted that the derivation is
valid also when dealing with noise free systems, i.e., 0 = 0. . .

In order to emphasize the difference between the GEN-and GPE-estimators
[11, 12} consider a incomplete linear model and suppose there is mo regular-
ization term (e.g., no weight decay) in the cost function. In that case the
GPE-estimator equals the FPE-estimator [1] FPE = Sn(®)(N +m)/(N-m)
which obviously is different from the one given in Eq.(16). :

Theorem 2. Suppose that the system and the model are given by Eq.(1),
(2), that the model is complete, and that w* defined by As.3, As.5 is the
global optimum of G(w). Further, suppose that As.2 trough As.6 hold and-

the noise variance E{e?} = o2 # 0., The GEN-estimate then coincides with
the FPE-estimate [1]: ' 5

GEN;FPE:fr'{'m

-m

Sn(®), N>m. (20)

Proof See the sketch above and [10].

“13Note that g — f may be equal to a constant which is independent of =. However,
this .case never occurs if the model contains a bias term, as e.g., in a multi-layer
feed-forward neural network with a linear output neuron. )
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4. NUMERICAL EXPERIMENTS

In this section we present a comparative numerical study in order to
demonstrate the usefulness of the GEN-estimator. The GEN-estimator is
- compared to the FPE-estimator Eq.(20), the cross-validation estimator, Cjo
- Eq.(9), and the leave-one—out cross—validation estimator, L, Eq.(10).

We form @ independent training sets with sizes:

- N = Nuin, Nain+1, ..., Npaee (21)
The s’th training set with size N, 7, {2 is given by: |
73 = {=(k); (k) (22)

‘where s € [1; @], N € [Nmin; Nmax), and k € [1; N]. The weight estlma.te

- obtained by using the training set, 7}3 ), is denoted by @(*k
"The "true” average genera.llzanon error, I', is estimated by:

fo = (am‘*’)) == ZG(*M) | (23)

r-l

where (-) denotes the average w.r.t. the Q training sets. Since we are able to
design the experiment by hand, it is assumed that it is possible to determine
the generalization error, G(®) = Ez, ., {e?(i)}. Obviously, limg_,,.I'¢ =T,
so when @ is large * I'¢ becomes an accurate estimate of T'.

The quality of the various estimators is quantified by three different mea-
sures: relative bias, RB, averaged squared error, ASE, and probabzhty of
proximity, IT which are defined by:

f's — (F(TY)

. o Te
([F) - Ta]') @

n = Pr{|GEN-r|<]f-f|}ﬁ~,

" RB (24)

"ASE

(»uw)-far—|mcafm—'fa|))- Sl

Te {GEN, FPE, Cso, L} denotes a particular estnnator and p(-) is the step
function. ' :
A linear system and a simple neural network are under consideration.

" Note that @ can be chosen arbitrarily large independent of the numlae: of training
_samples, N
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4.1. Linear system

The linear syﬁtem is given by:

y(k) = 4°(k) + e(k) = [2(k), 22(k)]w® + e(k) (27)
hwhere’ w® = [1,1]T. The input z(k) = ibﬂu(k - n[] where u(k) I-is an

ii.d. Gaussian sequence with zero mean maht?.n.it variance. b, is designed to
" implement a low-pass filter !® with normalized cutoff frequency 0.01. z(k) is
consequently colored and M~dependent (see As.4 above) with M = 15. (k) is
an iid. Gaussian noise sequence with zero mean, 02 = 0.2 - E.i{(v°)*(k)},
~ and independent of u(k). The model used is incomplete 18 and given by:

y(k) = wa(k) + e(k; w). @

" 107
i

§ ,i
: P
B TR
: BRRE
2 ik H i i i | 0 . ~ i
-8 W 40 6 80 100 120 140 180 I8
6@ 80 100 120 M0 160 1K
Trsising Set S, N Training Set Size, N

Fig. 2. Comparison of GEN and FPE within the linear model Eq.(28). We used
Q=3-10* 35<N<9and Q=2-10as 10< N <170

"The design is performed by the MATLAB (The Math Works, Inc.) M-file "fir1”
which uses a Hamming windowed ideal impulse response (i.e., sinc(z)).
**The z?(k) term is left out.
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Fig 3. Comparison of GEN and Cso within the linear model Eq.(28).. We used Q@ =
4.10°,VN.

gai

Raiative Blag, KB (%)
-

]
i

.................

Probabilicy, L
egee

o e B I I )
_ Training Set Stze, N
Fig. 4. Comparison of GEN and L within the linear model Eq. {28) We used Q = '

1- w‘a.s5<N<9mdQ—s 1o’aslo<N<wo
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The weight, w, is estimated by:
N -1 N S ‘
0= Z z’(k)] . Z z(k)y(k). (29)
k=1 k=1 ; '

Knowing- the details of the system Eq.(27) it is possible to compute analyti-
cally the true generalization error G(i@) according to Eq.(6). Let E{-} denote
_expectation w.r.t. z; and &;. Now, noting that z; is Gaussian: .

6(@) = B{[ufeitusel+e-om'}=

(w} - BV () + Mu3EGY 402 (30)

The result of comparing GEN with FPE, Cyo, and L is shown in Fig.2g4.
As shown in Fig.2 |RB(GEN)| < |RB(FPE)| when N > 15 and vice versa
when N < 15 17, When N > 100 the |RB(GEN )| is less than or equal to one
half of the |RB(FPE)|. The ASE of GEN is slightly higher than that of FPE
for most values of N. One could then argue that nothing speaks in favor of
using the GEN-estimator since what is gained in lower bias is lost in increased
variance. However, notice that ASE is merely one particular measure which
equally balance the squared first and second order moments (i.e., squared
bias and variance) of the estimator distribution over different training sets.
Inspecting the probability of proximity, II, it is seen that II = 0.7 in the
interval 60 < N < 170 indicating that GEN is closer to T than FPE. Hence,

it is concluded that one should prefer GEN when N > 25. .
- When comparing GEN to Cjo, as shown in Fig.3 it turns out that Cgo has
a smaller RB; however, the ASE(Cjo) is significantly higher. In fact:

T AS.E(CSO) < - .

| 3% sEGEM " . (31)
In addition, II(Cso) > 0.5 as N > 50 and reach a level of approx 0.55. The
probability of proximity seems not particularly high; however, it is judged that
the huge ASE makes the Cso—estimator a dubious alternative.

Concerning the L—estimator cf.Fig.4 we found that |[RB(GEN)| < |RB(L)|
as N > 15 and otherwise, vice versa. |[RB(GEN)| constitutes approximately
the half of |[RB(L)| when N = 100. The ASE of the two estimators are fairly
comparable for all N-values. Furthermore, Il > 0.5 as N > 30 and reaches
as level at approx. 0.75 at N = 100. Hence, one may prefer GEN to L when
N >30. '

The inequalities are significant on a 0.5% significance level, see [10, Ch.7).
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4.2. Simple neural network

.Consider a simple nonlinear system which consists of a single nonlinear
neuron: '

y(B) = °(k) +e(k) = (& (K)u?) + e(k), (32)

iy w(_(z;-v_)z) __exp(_'(z:y')z) )

where w° = (3,3]7. Let u(k) be a two-dimensional i.i.d. Gaussian sequence
with zero mean and E{u}(k)} = 1, E{u,(k)ug(k)} = 0.5. b, is given as in

the preceding subsectnon and z;(k) = Z boui(k —n), i = {1 2}. (k) is an
n=0 .
ii.d. Gaussian noise sequence with zero mean, o2 = 0.1- Ez(;,){(f)z(k)}, and

independent of u;(k). The activation function h(z) is chosen to be a sum of two
Gaussian functions in order to enable the evaluation of the true generalization
error Eq.(6). In this simulation: v = 2 a.nd n=1 The employed mcomplete
* nonlinear model of Eq.(32) is:

y(k) = h(wzy(k)) + e(k; w). : (34)
According to Eq.(6), (32) and (34) (E{-} w.r.t. [z, ¢]): ' .

6(9) E{ [ee + & (B)oo") - h(féz,_(k))]z} -

E{[h(zT(k)w") —'h(-mr(kn]’} ) (35)

Evaluation of the first term in Eq.(35) is possible; however, due to the extent
of the derivation it is omitted, see [10, Appendix D] for further details.
The weight, w, in Eq.(34) is estimated using a modified Gauss-Newton
‘algorithm [14, Ch.14]. That is, for each training set {zg’)(k), y()(k)}, s =
=1,2,...,Q (below the s index is omitted for simplicity):

Wiy = "’(‘) + pHy (wi))V(wg), ©(36)
N : l. 2 l' :
Hy(wp) = Y [H(wpea(k) - 21(k)] - (37)
k=1 k ;
N ' ' - _
V(wg) = l"Z_"f'(_‘ﬂ'(i)tx(*"’)) -21(k) - e(k; w(g) (38)
=1 ' ) i

1144 ! : ' J.Larsen
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where 0 < u < 1is the step—size and / denotes the derivative. For ea iteration p*
is adjusted in order to ensure: Sn(w(iyr)) < S}v(w(,-)). The employed stopping
criterion [14, Sec.14.4] was: (.S'N(w(,:+1)) - SN(w(,-)))/SN(w(.-)) < 10712,

The result of comparing GEN to FPE is shown in Fig.5.

\

B 2 % «© % © 2 0 w0 0
Triing St Size, N

Fig.5. Comparison of GEN and FPE within the neural model Eq.(34). We used
Q=5-10°, Y N. .

It turned out that |RB(GEN)| < |RB(FPE)| as N > 15; otherwise, vice
versa. The improvement in relative bias is approximately a factor of 1.75 as
N = 100. The average squared errors are approximately identical; however,
ASE(GEN) tend to be smaller when N is small. Finally, I > 0.5 as N > 15,
and II ~ 0.65 as N > 20. In conclusion, GEN may be preferred as N 2 15.

5. CONCLUSION

In this paper we have suggested to optimize the architecture of a neural
network by using generalization error estimators. The network architecture
with minimal estimated average generalization error is selected as being opti-
mal. _

Different estimators of the average generalization error were discussed and -
a presentation of the GEN-estimator [9, 10] was given. The GEN-estimator
is designed for the case of incomplete, nonlinear models. A model is signified
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as incomplete if it is not capable of modeling the underlying data generating
system perfectly. It was claimed that incomplete models are the typical case
when employing neural networks. The GEN-estimator may be viewed as an
extension of the Final Prediction Error estimator (FPE) [1] and the General-
ized Prediction Error estimator (GPE) [11, 12]. A concise list of advantages
and drawbacks of the GEN-estimator was also provided.

A numerical study for the comparison of GEN, FPE, the half-half split
cross-validation estimator, Csg, and the leave-one—out cross—validation esti-
‘mator, L, was setup. It turned out that in most cases the GEN-estimator is
a preferable alternative. The relative bias (RB) of GEN compared to FPE is
typically smaller, they possess similar averaged squared error (ASE), and the
probability of proximity (IT) is significantly larger than 0.5. The RB of the
Co is normally much smaller than that of GEN; however, the ASE of Cjo is
often extremely high. II is often only a little above 0.5; however, the high
variance may rule out the Cso—estimator. The RB of GEN compared to that
of L is often smaller while they possess similar variance; however, st1]1 IIis
well above 0.5.
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